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PPRREEFFAACCEE  
F. VARETTO / PRESIDENT OF ECCBSO 

 

The European Committee of Central Balance Sheet Data Offices (ECCBSO) brings 

together central banks, statistical offices and similar institutions within the European 

Union, that posses large datasets of financial statements stemming from non-financial 

enterprises. The objective of the ECCBSO is an exchange of views in order to improve 

the analysis of financial statements, particularly for assessing the creditworthiness of 

enterprises and for statistical purposes. The goal of the ECCBSO is achieved through 

several Working Groups dedicated to specific tasks. In co-operation with the European 

Commission the ECCBSO set up the BACH Database, which contains aggregated 

harmonised financial statements statistics to support macro-economic analysis. In 

addition, the ECCBSO developed the European Sector Reference Database which 

provides quartiles statistics useful for micro-economic comparisons. Both databases are 

publicly available on internet. More detailed information on the Committee’s activities will 

soon be available on the website which is currently in process of being launched 

(www.eccbso.org). 

 

The research of the Working Group on Risk Assessment of the ECCBSO has been 

dedicated (since its creation in the nineties of the last century) to credit risk modelling and 

measurement, recognising that this field has become a timely, important and widespread 

matter. In all areas of finance, research on credit risk modelling and measurement is 

extensive in both, industry and academia. 

 

In Europe, this trend is driven by: progress in risk measurement and management 

techniques, growth and integration of credit markets, the adoption of the revised Basel 

Capital Accord and the new collateral framework of the Eurosystem. Within this context 

the Working Group has the following fundamental aims: 

• to analyze and demonstrate the importance of financial accounting data in the 

assessment of corporate creditworthiness 

• to study and further develop different methodologies for credit risk assessment and 

model validation  

• to empirically investigate and compare the advantages and disadvantages of various 

measurement and validation techniques from a practical, mostly central-bank, 

http://www.eccbso.org/
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perspective, making use of  the aforementioned ECCBSO’s datasets of financial 

statements from non-financial enterprises. 

 

The collection of papers contained in this publication shows well the spirit behind the 

work of this group. The papers do not only address concrete and timely problems in 

credit risk assessment from a purely methodological side but also study their practical 

implications. I thank the group for its great work and hope that this publication will be 

read by academics, risk managers, regulators, and others who might find the problems 

and solutions, intellectually challenging and practically useful. 
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II..  IINNTTRROODDUUCCTTIIOONN  

F. RICHTER / OESTERREICHISCHE NATIONALBANK 

 

Credit risk has been one of the most active areas of recent financial research. In pursuit 

of its mission, the Working Group on Risk Assessment of the ECCBSO aims at 

contributing to this distinct field of research. The papers collected in this publication 

answer important scientific questions and suggest prospective paths for new research. 

Furthermore, they contain implementation methods and provide solutions to practical 

problems in credit risk measurement. In most of the papers, empirical examples are 

carried out from the special perspective of a central bank as most of the participats stem 

from such institutions. Due to their responsibility for implementing monetary policy and 

the involvement of many of these institutions in banking supervision, central banks have 

a natural interest in accurately measuring and managing credit risk. With respect to the 

topics being addressed, the papers could be classified into three different groups:  

 

I.1 DEFINING THE DEFAULT EVENT 
 

In credit risk modelling, the probability of default (PD) is one of the key parameters to be 

estimated. Research on different techniques for the estimation of the probability of default 

is extensive. It appears, however, that too little attention is paid to the different possible 

definitions of default in practice, although a clear understanding of the definition of default 

is crucial for a correct interpretation of any estimate of a PD. In his contribution, Mr. 

Traversaz addresses exactly this topic. He provides an overview of the various definitions 

of default used in the field of credit risk assessment and highlights their differences. 

Furthermore, he gives a practical example when he explains how Banque de France 

recently changed its definition of default from the original “narrow” one to a broader one. 

His findings demonstrate the importance of transparency concerning the default definition 

being used when publishing default statistics or any other information related to the 

assessment of the quality of a rating system. 
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I.2 MODELLING CREDIT RISK  
 

Two interesting papers provide empiricial evidence on credit scoring and default 

prediction in central banks. In her contribution, Ms. Toledo Falcon explains in great detail 

how Banco de Espana is currently developing logit models in order to enlarge its 

methodological spectrum used for the in house credit risk assessment. She discusses 

the merits of logit models and interprets the results obtained from her model, as well as 

the model’s power.  

 

The second paper on credit scoring was contributed by Ms. Lauria Auria and Mr. Moro. 

The authors discuss the advantages and disadvantages of support vector machines 

(SVMs) as a new promising non-linear, non-parametric classification technique, which 

can be used for credit scoring. After a basic review of the SVMs and their advantages 

and disadvantages on a theoretical basis, empirical results of an SVM model for credit 

scoring (calibrated using data of Deutsche Bundesbank) are presented and discussed. 

 

Whereas the two previous papers are concerned with default prediction of firms, in their 

contribution, Mr. Tessiore and Mr. Favale study the different parameters of credit risk of 

Project finance. Under Basel II, Project finance (PF) is one of five sub-classes of 

specialized lending (SL) within the corporate asset class. In their paper, they suggest a 

quantitative method based on Monte Carlo (MC) simulations of future cash flows (of the 

project involved with a Project Finance operation) that allows for an analytical estimation 

of the PD, the LGD and the EL. Furthermore, they explain how their approach has been 

implemented by Centrale dei Bilanci.  

 

Ms. Bardos rounds off the discussion on credit risk modelling when she explains in great 

detail what is at stake when estimating the probability of default using a scoring function. 

In her paper she presents some credit scoring construction principles, which increase the 

quality of the tool and the accuracy of default probability. She discusses some arguments 

for the choice of a model and concentrates on the comparison between Fisher linear 

discriminant analysis (LDA) and logistic regression (LOGIT). Furthermore, she shows 

how to determine stable risk classes and how to derive accurate estimates of the 

probabilities of default. In her empirical examples she uses data of the Banque de 

France.  
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I.3 VALIDATING CREDIT RISK MODELS 
 

The last contribution in this collection of papers is concerned with validation. The aims of 

the paper of Mr. Coppens and Mr. Winkler are twofold;  

 

a. First, they attempt to express the threshold of a single “A” rating (as issued 

by major international rating agencies) in terms of annualised probabilities 

of default. They use public data from Standard & Poor’s and Moody’s to 

construct confidence intervals for the level of probability of default to be 

associated with the single “A” rating. The focus on the single A rating level 

is not accidental. Single A is the credit quality level at which the Eurosystem 

considers financial assets as eligible collateral for its monetary policy 

operations. 

  

b. Second, they attempt to review various existing validation models that 

enable the analyst to check the ability of a credit assessment system to 

forecast future default events.  

 

Within this context, the paper proposes a simple mechanism for comparison of the 

performance of major rating agencies and other credit assessment systems. The aim is 

to provide a simple validation yardstick to help monitoring the performance of the 

different credit assessment systems, more specifically, those participating in the 

assessment of eligible collateral for Eurosystem’s monetary policy operations. Their 

analysis extends the earlier works of Blochwitz and Hohl (2001) and Tiomo (2004). Mr. 

Blochwitz has been a former member of the Working Group on Risk Assessment. Thanks 

to his contributions, the first “Traffic Light Approach” could be developed for the 

Eurosystem. This approach has been extended by Mr. Coppens and Mr. Winkler and is 

now being used by the Eurosystem to monitor the performance of credit rating systems in 

the context of the European Credit Assessment Framework. 
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IIII..  DDIIFFFFEERREENNTT  DDEEFFIINNIITTIIOONNSS  OOFF  DDEEFFAAUULLTT::  IISSSSUUEESS  FFOORR  

CCOOMMPPAARRIISSOONN  AANNDD  DDIISSCCLLOOSSUURREE  OOFF  RRAATTIINNGG  PPEERRFFOORRMMAANNCCEE  ––  

AANN  OOVVEERRVVIIEEWW  WWIITTHH  AA  SSPPEECCIIAALL  FFOOCCUUSS  OONN  UUNNPPAAIIDD  TTRRAADDEE  

BBIILLLLSS  IINN  FFRRAANNCCEE  

C. TRAVERSAZ / BANQUE DE FRANCE 

 

II.1. SYNOPSIS 
 
When it comes to credit risk assessment, the probability of default (PD) plays an 

essential role. In particular, it has an important influence when designing risk classes or 

drawing a comparison between different rating scales. At the same time less attention is 

paid to the different definitions of default which are a basic input factor to calculate these 

PDs.  

This article deals with the various definitions of default used in the field of credit risk 

assessment. Firstly, it shows that different definitions exist and that the information 

available differs significantly from one player to another. Secondly, it describes the 

particular case of Banque de France which has recently added a broader definition of 

default to its original “narrow” definition. A comparative analysis of the properties of these 

two definitions highlights the difficulty of comparing PDs which are based on different 

definitions of default, even when applied to a common portfolio. These findings lead to 

the emphasis of the importance of transparency when publishing default statistics and 

more generally any information related to the assessment of the quality of a rating 

system. 

 

 

II.2. INTRODUCTION 
 
When introducing the Basel 2 framework, the Basel Committee has come up with a new 

definition of default. According to the reference text1 each bank which intends to adopt 

the Internal Rating Based (IRB) approach has to use this definition of default when 

calculating its minimum capital requirements for credit risk. According to this definition, a 

default is deemed to have occurred when “the bank considers that the obligor is unlikely 

                                                 
1 Basel 2 Committee - International Convergence of Capital Measurement and Capital Standards. 
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to pay2 its credit obligations to the banking group in full, without recourse by the bank to 

actions such as realising security (if held)” or when “the obligor is past due more than 90 

days on any material credit obligation to the banking group (…)”.  

This clarification was necessary not only for obtaining a coherent framework but also for 

triggering a convergence process of all the different definitions of default which are still in 

use by the different players in the credit risk assessment field (rating agencies, 

commercial banks, national central banks and others). The wide set of definitions 

currently used often makes it extremely difficult to identify and measure exactly the link 

among them. The reasons for these difficulties are of different nature like access to 

information, interpretability of definitions, scope of companies (listed on the Stock 

Exchange, small companies …) etc.  

Actually, each player in the rating sector has used the data available in the best possible 

way, whereas this data can differ strongly from central banks to commercial banks or to 

international rating agencies. Even among European national central banks the available 

information differs according to domestic legal and organizational specificities. In order to 

use the available data in the most efficient way, each player tries to take into account the 

proprietary information to design its rating scale and, sometimes, its definition of default. 

This has been achieved by Banque de France (BdF) when we decided to include unpaid 

trade bills3 in our method. French Law has put under BdF responsibility collection and 

management4 of payment default data on trade bills. Due to the high success rate of 

predicting risk, it had been decided to use this information for the design of some grades 

of our rating scale5, in particular the worse ones. 

 

As a result BdF added to its failure definition based on judicial proceedings (information 

publicly available) a default definition (called Banque de France’s definition of default) 

with a larger scope than the definition based on the occurrence of judicial proceedings, 

using unpaid trade bills. 

 

The first part of this article is dedicated to the different definitions of default which are 

currently used by players who assess credit risk. The second part deals with how BdF 

designed its particular definition of default, the issues faced hereby and the comparison 

of the two definitions of default used in Banque de France. 
                                                 
2 This notion is explained in details in the original text. 
3 A bill of exchange is an unconditional order in writing, addressed by one company to another, requiring the company to whom it is 
addressed to pay on demand, or at a fixed and determinable future time, a sum certain in money to the order of a specified company, 
or to bearer. It is a negotiable instrument, similar to a post-dated cheque, which is usually sold at a discount.  
4 In accordance with the amended regulations 86.08 and 86.09 of the Banking and Financial Regulations Committee 
5 Banque de France rating grades are from the best to the worse : 3++, 3+, 3, 4+, 4, 5+, 5, 6, 8, 9, P. Rating P is awarded in case of 
legal proceedings and ratings 8 and 9 when unpaid trade bills occur (depending on the cumulated amount). 
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II.3. DIFFERENT PLAYERS, DIFFERENT DEFINITIONS OF DEFAULT 
 

The world of credit risk assessment is a wide one. This is why so many credit 

assessment institutions can be found all over the world and why each player focuses on 

a specific population. This specification can be caused by location (National Central 

Banks for example), portfolio limits (commercial banks), whether a company is publicly 

listed or not, has recourse to bond and other traded securities markets or not 

(international agencies) etc. Due to these different scopes, each player uses the 

information he has access to in order to design the most appropriate rating scale. As a 

result a variety of definitions of default are in use nowadays.  

 

A comparison of all these definitions of default showed that the most common input is 

related to failure events. As bankruptcy and insolvency are public information and as 

these events are the last step in the falling down process of a company, almost all 

players which assess credit risk use these judicial events to design their worse grades. 

For example, Banque de France’s worst grade is defined exactly in this way: the P rating 

is related to companies undergoing legal proceedings (turnaround procedure or judicial 

liquidation). Moreover, this “failure” definition is currently the most widely used within 

Eurosystem National Central Banks which run an In-house Credit Assessment System. 

However, even though the failure event may appear as the greatest common divisor of all 

the definitions of default in use, one must not forget that even failure events may differ 

from one country to another because of differences between judicial procedures. 

 

Many other players use what could be named “default on marketable debt instruments”. 

This is namely the approach which is implemented by international rating agencies. The 

advantage of this method is that this information (non payment on marketable debt 

instruments) is public. On the other hand it only applies to big companies and, moreover, 

such a default may occur rather late in the financial difficulty process of a company as it 

has an influence on market share or bond value.  

 

The third group of players which can be easily identified are mainly commercial banks. 

Due to their business activity they have access to defaults on the bank loans that are part 

of their loans’ portfolio and they generally use this information to design their definition of 

default. More precisely, banks who want to adopt the IRB approach have to use it 

because it is part of the Basel 2 definition of default (“the obligor is past due more than 90 
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days on any material credit obligation to the banking group (…)”6). Some National Central 

Banks in the Eurosystem gather this information from commercial banks as well. This is 

the case, for example, in Austria and in Portugal. 

 

Last, but not least, some players use different definitions or a combination of the 

previously mentioned definitions, always depending on the availability of information. For 

example, Banque de France uses failure and unpaid trade bills. 

 

Looking at all these definitions the decision to promote way in the Basel 2 framework a 

definition of default which aims at including all the possible default events while being 

precise enough to be applied in a harmonised way by all credit institutions brings a major 

improvement. Nevertheless, it is interesting to point out that this definition of default has 

to be used (in the Basel 2 framework) only by commercial banks which adopt the IRB 

approach. External Credit Assessment Institution (ECAI), the institutions in charge of 

assessing credit risk for banks adopting the Standardised Approach, have no obligation 

to adopt the Basel 2 definition of default, although the guidelines set up by the European 

Committee of Banking Supervisors encourages converging towards this definition. As a 

result it is the role of the supervisors, given all the data concerning default rates and the 

definition of default used by the institutions, to map the rating scale of each ECAI to the 

so called “reference scale”7.  

 

One of the reasons why a harmonised default-definition for all the ECAI has not been 

required is that an ECAI can be any player assessing credit risk (Rating Agencies, 

commercial firms such as credit bureaus, National Central Banks…), provided that this 

player matches the requirements sets by the CEBS guidelines and by the national 

supervisors. As each player is interested in a specific population (e.g. large vs. small 

companies, quoted vs. unquoted …) and thus uses a definition of default which fits with 

the own portfolio, the determination of a harmonised default-definition for all the players 

in the market does not seem practicable at least over the short term.  

 

Nevertheless national supervisors have to take into account the specific definition of each 

applicant: “the Capital Requirements Directive requires competent authorities to consider 

qualitative factors such as the pool of issuers covered by the ECAI, the range of credit 

                                                 
6 Basel 2 Committee - International Convergence of Capital Measurement and Capital Standards. 
7 The reference scale is based on default rates (AAA-AA is equivalent to a PD of 0.10%, A to 0.25%, BBB to 1.00%, BB to 7.50% and 
B to 20.00%). See Annex 2, Internal Convergence of Capital Measurement and Capital Standards – Basel Committee on Banking 
Supervision. 
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assessments that it assigns, the meaning of each credit assessment, and the ECAI’s 
definition of default”8. 

 

The following second part of this article illustrates how Banque de France dealt with the 

difficulty of comparing different definitions of default when introducing a second definition. 

The latter was implemented to have a better understanding on the impact of widening the 

original definition of default (based only on legal proceedings). 

 

 

II.4. DESIGNING A NEW DEFINITION OF DEFAULT: BANQUE DE FRANCE`S 

EXPERIENCE 
 

Currently Banque de France uses two different definitions of default. The “narrow” one 

(“BdF failure”) is based on legal proceedings (turnaround procedure or judicial 

liquidation). The “broad” one (“BdF default”), which includes the first one, is based in 

addition on unpaid trade bills. 

 

“BdF failure” definition: a company is said to be in "failure" if there is a judicial procedure 

(turnaround procedure or liquidation) against it → the company is rated as P. 

“BdF default” definition: a company is said to "default" if the previous condition applies to the 

company (a judicial procedure) or if the company gets a rating of 9 because of trade bill payment 

incidents declared by one or several credit institutions. 
 

Box 1: BdF failure & default definition 

 

Deriving from the SIT9 (Interbank Teleclearing System) Banque de France is managing a 

database (called CIPE) which registers all the incidents concerning payments of trade 

bills. This database is fed automatically by all the banks located in France through 

dematerialised automated online reporting systems. When an incident on a payment of a 

trade bill occurs, the following information is registered: supplier, customer, amount, 

expected date for payment and the reason for the non payment. Reasons for non 

payment are divided into two main categories. The first one is “Impossibility to Pay” (IP) 

which includes for example reasons such as “insufficient deposit” or “judicial decision”. 
                                                 
8 C.E.B.S. – Guidelines on the recognition of External Credit Assessment Institutions – 20 January 2006 – Article 147. 
9 France has three interbank payment systems, two for large-value payments (cash transfers, settlements for delivery of securities,...) 
and one for retail payments (cheques, bank cards, credit transfers, direct debits, interbank payment orders (TIP), bills of exchange, 
...). The two large-value systems are the Transfers Banque de France (TBF) system, which forms part of TARGET, the Trans-
European Automated Real-time Gross settlement Express Transfer system, and the Paris Net Settlement (PNS) system. The 
Interbank Teleclearing System (SIT) handles retail payments, clearing interbank exchanges of cashless payment instruments. 
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The second one may be identified as “Claim Contestation” (CC); it regroups reasons 

such as “disagreement on the amount of the claim” or “on the date”, “incomplete 

payment” (see below), etc. 

 
 

• “Impossibility to Pay” reasons: 
o holder dead 

o request for prorogation 

o without sufficient funds 

o will be paid by subrogation 

o insufficient deposit 

o no order to pay 

o judicial decision 

o objection to payment on the account 

 

• “Claim Contestation” reasons: 
o received by error: already paid 

o late complaint 

o disputed drawing 

o disputed amount 

o disputed date 

o incomplete payment 

o objection to payment by the debtor 

 
 

Box 2: Reasons for unpaid trade bills 

 

In France trade bills of exchange are a commonly used means of payment. In 2006 they 

represented 1% in number but 8% in value of the 12.3 billion transactions, worth a total of 

€ 5.075 billion, processed by the SIT10. Furthermore, for small and medium enterprises 

trade credit is a major source of business financing. 

 

In Number                                                           In Capital 

    
 

Source: www.gsit.fr 

Exhibit 1: Operations processed via the SIT in 2006 

 

                                                 
10 Source: www.gsit.fr 
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II.4.1. Banque de France’s rating: “Cotation Banque de France” 
 
The database of Banque de France (FIBEN) records information on a broad population of 

natural and legal persons, including sole traders. The branch network11 collects a wide 

range of information on these populations. 

The information gathered on each natural person or legal entity is analysed and then 

issued as a succinct overall assessment that can be easily interpreted by the different 

users. The rating is an overall assessment of a company’s ability to meet its financial 

commitments over a three year horizon. The rating process is not an automatic one. 

Instead this rating is established on the basis of numerous factors like assessing the 

company’s financial position (profitability and balance sheet structure), its expected 

development, the assessment of management, shareholders, the economic environment, 

affiliated companies or those with which the company has close financial commercial ties 

and the existence of payment incidents or legal proceedings. 

 

The credit rating is represented by a number which can be followed by a plus. The 

different ratings, ranging from best to worst, are: 3++, 3+, 3, 4+, 4, 5+, 5, 6, 8, 9 and P. 

The P rating refers to companies undergoing legal proceedings while ratings 8 and 9 

indicate the existence of payment incidents on trade bills. More precisely, the difference 

between 8 and 9 depends both on the amount (different thresholds) and on the nature of 

unpaid trade bills (IP are much more risky than CC). In order to ensure a balanced 

assessment, the decision on the rating is taken by the analyst after, among others, 

having consulted a short complementary report drafted by the banker that has reported 

the default event. 

On December 31st 2006 the database included about 5.2 million companies of which 

about 220 000 were rated according to this methodology. 

 

                                                 
11 The branch network of Banque de France is constituted by 96 departmental branches and 21 economic centres. 
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Numbers of companies rated after a study of their 
financial statements the January 1st, 2006.

11 680

22 102
26 238

41 192

32 078 30 288
27 535

9 767
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Source: Banque de France 

Exhibit 2: Signification of Banque de France`s ratings 

 

 

II.4.2. Assessing the predictive power of unpaid trade bills 
 
The first step before integrating a new element into a methodology is to check its 

efficiency. This can either be done by comparing the failure rates obtained for each 

category of companies (with or without unpaid trade bills) or, to be even more accurate, 

by separating companies depending on the reasons of unpaid trade bills. The results of 

this preliminary work are shown in the Chart 2 below. 
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(X%, Y%) :  ▪ X% of the companies with at least 1 unpaid trade bill in 2004 

  ▪ Y% of the companies rated the January 1, 2005 

 
Failure: judicial proceedings (turnaround procedure or judicial liquidation) 

CC: unpaid trade bill with a “claim contestation” reason. 

IP: unpaid trade bill with an “impossibility to pay” reason. 

29% of all the companies were concerned by at least one unpaid trade bill in 2004. 
 

Source: Banque de France 

Exhibit 3: Failure rates depending on the population 

 

Looking at the results obtained, at least two conclusions may be drawn. The first one is 

that taking into account the reason of non payment is absolutely crucial. The second is 

that, according to failure rates obtained for unpaid trade bills with an “IP” reason 

(Impossibility to Pay), this element (IP) has a predictive power to detect failure. 

Rated population with valid financial statements the January 1, 2005: 213 703 
companies 
Failure rate: 1.46% 

Only CC 
49 329 

(79.41%, 23.08%) 
 
Failure rate: 0.83% 

Only IP 
6 550 

(10.55%, 3.07%) 
 
Failure rate: 9.13% 

IP and CC 
6 238 

(10.04%, 2.92%) 
 

Failure rate: 
9.91% 

At least 1 unpaid trade bill in 2004: 62 117 companies (29.07% of the rated 
companies) 
Failure rate: 2.62% 
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II.4.3. Designing rating grades taking into account unpaid trade bills  
 
After having defined a predictive element to detect failure as a starting point, the next 

step was to learn more about the relationship between the repartition of the unpaid trade 

bills (in numbers, in amounts and relatively to the purchasing expenses) and the failure 

rates. Results are shown in Exhibit 4. 

 

1 year failure rate depending on the number of 
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1 year failure rate depending on the cumulated amount 
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Source: Banque de France 

Exhibit 4: Repartitions of the unpaid trade bills depending on failure rates 

 

 

Number of 
IP Nb 1 year 

failures
1 year failure 

rates

1 2 789 158 5,67%
2 1 195 111 9,29%

 3 - 4 1 106 135 12,21%
 5 - 9 1 254 177 14,11%
≥ 10 1 492 291 19,50%

Cumulated amount of 
IP during last 6 

months (€)
Nb 1 year 

failures
1 year failure 

rates

1 - 1 499   1 721   66 3,83%
1 500 - 4 999   1 106   85 7,69%
5 000 - 9 999      834   92 11,03%

10 000 - 19 999   1 173   128 10,91%
20 000 - 29 999      753   90 11,95%
30 000 - 49 999      854   128 14,99%
50 000 - 99 999      869   165 18,99%

≥ 100 000      526   118 22,43%

Cumulated 
amount of IP / 
Purchases (%)

Nb 1 year 
failures

1 year failure 
rates

0 - 0.09   1 459   49 3,36%
0.1 - 0.59   1 395   115 8,24%
0.6 - 1,9   1 597   191 11,96%
2 - 4,9   1 433   189 13,19%
5 - 9,9      674   115 17,06%
≥ 10      378   87 23,02%
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Given the results of this analysis Banque de France defined two different thresholds and 

consequently created two additional grades based on unpaid trade bills. These grades 

are slightly better than “P” (P stands for a failure event) and have been named “8” and 

“9”. 

 

II.4.4. Designing a new definition of default 
 

Mainly for stability reasons (actually, we did not want a volatile grade with companies just 

coming and leaving; see chart 4 below) it had been decided to define only grade 9 as 

additional default rating class (beside “P”).  

 

After introducing the two new rating grades it was necessary to observe after a time span 

of one year the impact of the change in the rating scale on the portfolio by means of a 

transition matrix. 

 
 

 % 3++ 3+ 3 4+ 4 5+ 5 6 7 8 9 P 0 Number
Default    
( 9+P )

3++ 67,6 17,4 5,0 3,6 1,2 0,3 0,1 0,0 0,0 0,0 0,0 0,0 4,6 11 815 0,01

3+ 10,6 55,2 16,1 8,9 3,4 0,6 0,4 0,1 0,0 0,0 0,0 0,0 4,6 21 459 0,03

3 1,7 15,2 53,1 16,5 6,5 1,0 0,6 0,1 0,0 0,0 0,0 0,1 5,3 27 316 0,11

4+ 0,8 3,5 12,7 50,9 15,7 4,5 2,7 0,3 0,1 0,1 0,0 0,5 8,1 45 528 0,51

4 0,1 0,7 3,5 22,7 44,6 10,4 6,6 0,8 0,2 0,3 0,1 0,9 9,2 33 921 1,03

5+ 0,0 0,1 0,4 8,0 13,0 50,1 12,8 2,3 0,3 0,5 0,3 1,4 10,7 30 918 1,7

5 0,0 0,1 0,2 3,5 7,4 18,9 47,2 6,4 0,7 0,9 0,5 3,2 11,0 26 069 3,7

6 0,0 0,0 0,2 1,0 2,5 8,8 18,9 55,1 0,7 0,7 0,3 4,3 7,5 9 099 4,54

8 0,0 0,0 0,1 0,6 4,5 8,8 24,7 9,2 5,9 12,4 12,3 17,5 4,1 887 29,76

9 0,0 0,0 0,0 0,5 1,8 3,6 12,9 8,7 6,0 15,6 25,4 22,8 2,7 552 48,19

P 0,0 0,0 0,0 0,0 0,1 0,0 48,2 0,4 0,4 0,5 0,0 45,7 4,7 963 45,69

Total 5,3 9,6 12,3 19,8 14,9 13,1 10,8 3,8 0,3 0,4 0,3 1,4 8,1 208 527 1,67

December 31st, 2006

Ja
nu

ar
y 

1s
t, 

20
06

 
The transition matrix shows the migration of the rated companies during a period of one year. For 

example, 17.4% of the companies rated 3++ by January 1st 2006, were rated 3+ by December 

31st 2006. 
 

Source: “The Banque de France rating – a performance evaluation (failure and default rates, transition matrixes)”12 

Exhibit 5: Transition matrix 

 

 

                                                 
12 This report can be downloaded on Banque de France website: http://www.baqnue-france.fr/fr/instit/telechar/services/echelle.pdf 
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The transition matrix proves that introducing grades 8 and 9 into the rating scale has no 

significant impact on the best grades but affects mostly the worse ones. This is a first 

clear indication that default and failure rates do not differ too much for best grades. 

 
 

Number Rate (%)
3++ 11 635 0 0,00%
3+ 21 156 2 0,01%
3 26 418 14 0,05%
4+ 44 418 138 0,31%
4 33 306 230 0,69%
5+ 31 168 405 1,30%
5 26 874 892 3,32%
6 9 584 495 5,16%
8 877 163 18,59%
9 500 95 19,00%

TOTAL 205 936 2 434 1,18%

Rating Number of 
companies

1 year failure

 
Companies rated after a study of 2004 financial statements 

 

Source: “The Banque de France rating – a performance evaluation (failure and default rates, transition matrixes)”13 

Exhibit 6: Failure rates for each grade 

 

Failure rates confirm that introducing unpaid trade bills has allowed increasing the 

discriminatory power of the rating scale. Actually, one grade (initially grade 6) has been 

split into three grades with increasing failure rates. For example, assuming that 

companies rated 8 or 9 would have been rated 6 (the worse grade before grades 8 and 9 

based on unpaid trade bills were created), it had been made possible to separate a grade 

with a failure rate of 6.87% (
5008779584
95163495

++
++

= ) into three grades with failure rates from 

5.16% to 19.00%.  

 

 

 

 

 

 

                                                 
13 This report can be downloaded on Banque de France website: http://www.baqnue-france.fr/fr/instit/telechar/services/echelle.pdf 
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II.4.5. Comparing default and failure rates 
 

The next chart shows a comparison between the two definitions of default (“BdF failure” 

and “BdF default”). The figures confirm that default and failure rates are very similar for 

the best rating grades. On the other hand results can differ significantly as far as worse 

grades are concerned. However, this was expected when enlarging the “BdF failure” 

definition of default, assuming that Banque de France’s methodology is not only able to 

predict failure but also to predict emerging financial difficulties. 

 
 

Number Rate (%) Number Rate (%)
3++ 11 635 0 0,00% 2 0,02%
3+ 21 156 2 0,01% 2 0,01%
3 26 418 14 0,05% 16 0,06%
4+ 44 418 138 0,31% 168 0,38%
4 33 306 230 0,69% 301 0,90%
5+ 31 168 405 1,30% 508 1,63%
5 26 874 892 3,32% 1 050 3,91%
6 9 584 495 5,16% 564 5,88%
8 877 163 18,59% 347 39,57%
9 500 95 19,00% 500 100,00%

TOTAL 205 936 2 434 1,18% 3 458 1,68%

Rating Number of 
companies

1 year failure 1 year default

 
Companies rated after a study of 2004 financial statements  

 

Source: “The Banque de France rating – a performance evaluation (failure and default rates, transition matrixes)”14 

Exhibit 7: Default and failure rates 

 

 

II.5. SUMMARY AND CONCLUSION 
 

This article deals with the relevance of default definitions particularly as there are many 

definitions in use by the different market players (rating agencies, commercial banks, 

national central banks, etc.) and as there is an ongoing discussion process triggered by 

national and pan-European regulations in the context of Basel II and the European 

Directive15.  

                                                 
14 This report can be downloaded on Banque de France website: http://www.baqnue-france.fr/fr/instit/telechar/services/echelle.pdf 
15 European Directive 2006/48/CE of the European Parliament and of the Council of June 14, 2006, relating to the taking up and 
pursuit of the business of credit institutions (Banking. Directive). 
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Comparing the two definitions of default used in Banque de France suggests that there is 

an unambiguous correlation between default definition and default rates. However the 

results obtained indicate that the impact of the definition of default on default rates is 

quite complex as there is no simple way to switch from one definition to another, for 

example with a linear coefficient.  

 

As a first consequence, comparing ratings from different rating issuers which do not 

exactly use the same definition of default is far from being straightforward. As a second 

implication, the publication of default rates should be accompanied with a comprehensive 

description of the methodology used, and any change in the methodology should be 

disclosed. This effort in improving transparency would encourage sharing best practices 

and helping reduce information asymmetries between credit assessment institutions and 

rating users. 
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IIIIII..  LLOOGGIITT  MMOODDEELLSS  TTOO  AASSSSEESSSS  CCRREEDDIITT  RRIISSKK  

L. TOLEDO FALCÓN / BANCO DE ESPAÑA  

 

III.1. INTRODUCTION 
 
The rating of a firm can be defined as the mapping of the expected probability of default 

into a discrete number of quality classes or rating categories (Krahnen and Weber, 

2001). For the quantification of the expected likelihood of future default, rating systems 

are based on models that may combine qualitative elements with quantitative financial 

and economic information. 

 

Banco de España (BdE) carries out an in-house credit assessment of non-financial 

companies in order to decide which of them can be considered eligible collateral for 

monetary policy purposes. At the moment, an expert-based system is used, which allows 

considering very relevant qualitative aspects. As this method is highly time-and-resource-

consuming, this limits the amount of firms that can be analyzed, which is around one 

hundred. In addition to that a bias of big enterprises has to be observed. 

 

With the aim of enlarging the methodological spectrum of BdE, as well as of producing 

estimated probabilities of default16, BdE has been developing a new methodology which 

is to be put into practice in the immediate future. In this sense, logit models will be used 

as additional tools in the in-house credit risk assessment process. 

 

In this respect, a very important point, that must be stressed, is that the objective is to 

select a set of very good companies by minimizing the error of misclassifying defaulting 

companies as sound ones (type I error), while at the same time being aware that some 

companies, due to lack of data, will not be examinable. In addition to this, the decision to 

be taken on each single firm, based on the probability of default estimated by a logit 

model, will be whether such firm is eligible or not. At this moment there are no plans to 

produce ratings that allow classifying firms in different homogeneous groups. To do so, 

an additional step would be required to map probabilities of default into ratings.  

 

                                                 
16 As explained in section 3, the default definition used here is past due more than ninety days on any credit obligation. 
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The objective of this article is to present the methodology that the Operations Department 

of BdE is following in the estimation of logit models, as well as some general results for 

the Spanish sample. To do so, section 2 briefly presents the general concepts and some 

particular details of the methodology applied. Section 3 describes the data, which 

undergo a univariate analysis in section 4. Section 5 presents the results for some 

multivariate models and, finally, section 6 draws the main conclusions from the analysis. 

 

 

III.2. METHODOLOGY 
 

Since the late 60s, many studies have tried to demonstrate the usefulness of accounting 

information periodically published by firms to detect default proximity. Since the 

pioneering papers by Beaver (1966) and Altman (1968 and 1977), a lot of studies have 

tested a wide range of variables and proposed many different methodologies. Every 

rating model starts from a definition of failure which defines two sub-samples of firms: 

failure and non-failure firms. The next step is to use one or several ratios commonly used 

to evaluate firm situation to discriminate between both groups. The most used techniques 

have been the statistical ones, especially multiple discriminant analysis and conditional 

probability models (logit and probit). More recently, iterative partitions, artificial neural 

networks and support-vector machines have also been applied. 

 

In this paper logit models are discussed, which were introduced for default prediction 

purposes by Ohlson (1980) and Zavgren (1985), and which have many positive qualities: 

 

• they do not assume multivariate normality; 

• they are transparent when evaluating the meaning of coefficients, this is, the 

importance of each variable; 

• they allow to obtain a direct estimation of probability of failure (default); 

• according to the literature, they show good predictive results when compared to other 

techniques;  

• they allow taking into account non-linear relations among variables; which has proven 

to be very useful in BdE´s sample; and 

• they work well with qualitative explanatory variables. 
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Logit analysis is a conditional probability technique which allows studying the relationship 

between a series of characteristics of an individual and the probability that this individual 

belongs to one of two groups defined a priori. A binary variable Y showing the status of 

the firm at the end of a certain period is explained by a set of factors X according to (1): 

 

( ) [ ] ( ) [ ] )1(,1/0;,/1 Β−==Β== iiiiii XFXYPXFXYP  

 

where:    

Yi : binary failure variable for firm i, taking value “1” if the firm fails and “0” 

otherwise 

Xi : values for firm i for the set of J independent variables 

В : set of parameters 

 

The logit model, whose general equation is given by (2), guarantees that F[Xi,В] is 

constrained to interval [0,1]. A direct consequence of such specification is expression (3) 

17, which defines the score.  
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where:   

   βj : parameter of variable j 

xji : value of variable j for firm i 

Zi : score of firm i 

 

 

 

 

                                                 
17 Although this is the usual way of presenting a logit model, with variables entering the equation in a linear way; this type of 
methodology also allows controlling for non-linear relationships among variables. In non-linear logits, the corresponding quadratic 
terms are also part of the equation.  
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Parameters α and β are estimated by maximum likelihood for a joint probability given by 

(4), where N is the number of firms in the sample. A positive sign in the estimated 

coefficient β*
j implies a positive relation between variable j and the probability of failure. 
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As explained above, the endogenous variable (Y) in a logit model is a binary variable 

taking value 1 if the firm fails and 0 otherwise. The concept of failure, however, embraces 

a wide range of status, including discontinuities affecting the firm, the owner or the 

business; economic and financial failure and legal insolvency. Most studies use 

liquidation, bankruptcy or default as a definition for failure. Here, the default definition 

used by the Central Credit Register (CIR) of BdE is applied, which coincides with the 

Basel II definition of default. 

 

The selection of the independent variables (X) is crucial for the model’s performance, 

since they must be significant and relevant to differentiate between “good” and “bad” 

firms. Firstly, a wide set of variables was considered. This range of variables includes the 

main economic and financial ratios of the firm which, according to the related literature 

and to BdE’s experience, have a strong discriminating power for credit risk. Other non-

financial factors, both quantitative and qualitative, were also considered to be potentially 

relevant. Some of the analysed variables are discussed - as described in detail in Table 1 

in the Annex  - and can be divided into four groups according to the aspect of the firm 

they try to measure:   

• Solvency: financial autonomy, adjusted financial autonomy, total leverage, financial 

leverage, financial expenses coverage (EBIT), financial expenses coverage (EBITDA) 

and repayment capacity. 

• Profitability: economic return, financial return, operating margin and resource 

generation capacity. 

• Liquidity: acid test, general liquidity, short term debt to total debt, short term interest-

bearing debt to total debt, short term bank debt to total debt and net liquidity to 

liabilities. 

• Other: firm age, size and growth; public sector or financial institutions stockholding, 

group membership, economic sector and macroeconomic environment. 
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As section 4 states, these variables went through a univariate analysis to determine, for 

each group, which of them are the best in predicting default. This is a very useful step 

which helps to reduce the number of variables to be taken into account in the multivariate 

analysis after having identified colinearity. 

 

In order to be consistent with the firm assessment process operating in the Firms 

Assessment Unit, where the assessment for a given year uses information up to the 

previous year, the time horizon for the prediction will be one year. Then, default in year t 

will be predicted according to the available information in year t-1. 

 

 

III.3. DATA 
 
A frequent and important problem faced when trying to construct a rating model is the 

lack of the necessary data. It is essential to find information on firms’ financial statements 

as well as on default, which usually is property of companies and/or credit institutions. 

For Spanish borrowers, both types of data can be obtained from BdE’s internal 

databases: the Central Balance Sheet Office (CB) and the CIR, respectively.  

 
III.3.1. Independent variables 
 

Accounting information and some qualitative data were obtained from BdE’s CB18. It 

provided information from:  

• its annual database (CBA), where firms fill in a comprehensive questionnaire on a 

voluntary basis; and 

• the Commercial Register (CBB), where all firms must deposit their financial 

statements every year19. 

 

 

 

 

 

 

                                                 
18 It must be noted that all information used in this study stems from individual accounts. 
19 Both databases are complementary. This is, if an observation is included in CBA database, then it is not part of CBB database.  
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The information available is much more comprehensive for those firms in CBA, that 

provide a wider split-up for some entries of financial statements, as well as qualitative 

information. This allows computing more ratios for CBA observations than for CBB ones. 

Such limitation mainly affects debt composition, which is a potentially relevant issue to 

credit quality assessment. However, the possibility of obviating CBB information due to 

its “simplicity” must be ruled out, as this database provides the vast majority of 

observations. CBB information is essential to the attainment of a representative sample 

of the universe of Spanish firms, since CBA database is biased towards big enterprises 

(as we will see below, the average sizes of both databases are quite different according 

to all size criteria considered).  

 

Therefore, two possible solutions were faced: 

• To estimate a single model for the whole sample considering just those variables 

which can be computed for both databases; which in practical terms means those 

variables that can be computed for CBB. 

• To estimate two different models, one for each database. Then, more variables would 

be considered in the construction of CBA model than in the CBB one. 

 

The first option would imply rejecting most ratios that capture debt composition, which a 

priori are expected to be very relevant to credit quality assessment. Consequently, the 

second option was chosen, so a differentiation between CBA model and CBB model will 

be shown. 

 

The initial sample included all observations in both databases for period 1991-200420. 

After a previous treatment to detect and refine errors, the result was 144,973 

observations in CBA and 1,197,427 in CBB (see Table 1). 

 
 

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 TOTAL

CBA 7,223 7,213 7,797 8,960 9,404 9,842 10,087 9,963 10,085 10,582 11,141 12,948 14,327 15,401 144,973

CBB 673 1,472 9,283 16,472 42,940 61,065 81,470 91,394 83,029 97,675 118,157 162,660 195,471 235,666 1,197,427  
Note: not all observations have data for every ratio. 

Table 1: Number of observations 

                                                 
20 In the initial data upload, a filter in terms of size was applied in order to eliminate firms without activity. To be precise, firms 
simultaneously fulfilling the following two conditions were dropped: 1) number of employees = 0, and 2) turnover lower than 100,000 
euros. The aim was identifying and eliminating those firms without real activity which are registered for “other reasons” (no employees 
and low turnover); while keeping head offices (no employees but significant turnover) and small enterprises (low turnover and number 
of employees different from zero). 
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Table 2 shows the sectoral distribution of observations for both databases according to 

the CB-26 classification criterion followed by the CB, which considers twenty six different 

categories or subsectors. As demonstrated, all groups have a significant number of 

observations. However, this was not the sectoral classification used. Since the economic 

sector was going to be included in the model through dummy variables, a narrower 

aggregation resulting in fewer categories was desirable. The grouping criterion, which is 

also depicted in table 2, considers five economics sectors (and, consequently, five 

dummy variables): energy, industry, market services, construction and others.  

 

SECTOR CB-26 SUBSECTOR

1. Energy products extraction 315 0,1% 513 0,0%
2. Mineral extraction, except energy products 765 0,3% 3.913 0,2%
4. Oil refining and nuclear fuel treatment 129 0,0% 74 0,0%
17. Electric energy, gas and water production and distribution 1.421 0,5% 1.675 0,1%
18. Water collecting, treatment and distribution 875 0,3% 1.062 0,0%
Total energy 3.505 1,3% 7.237 0,3%
3. Food, drink and tobacco 9.430 3,4% 26.800 1,2%
5. Chemical industry 5.065 1,8% 6.541 0,3%
6. Other non-metal mineral products 4.242 1,5% 13.208 0,6%
7. Metallurgy and metal products manufacture 6.375 2,3% 43.809 2,0%
8. Machinery and mechanical equipment construction 3.864 1,4% 13.653 0,6%
9. Electric, electronic and optical equipment and materials 3.270 1,2% 9.447 0,4%
10. Transport material manufacture 2.464 0,9% 3.385 0,2%
11. Textile and clothing industry 5.023 1,8% 24.307 1,1%
12. Leather and shoe industry 1.213 0,4% 10.172 0,5%
13. Wood and cork industry 1.692 0,6% 16.429 0,7%
14. Paper, edition and graphic arts 4.739 1,7% 26.318 1,2%
15. Rubber transformation and plastic materials 2.697 1,0% 9.354 0,4%
16. Various manufacturing industries 2.908 1,0% 23.062 1,0%
Total industry 52.982 19,1% 226.485 10,3%
20. Trade; automobile, motorcycle, moped and personal goods for household use repairs 35.817 12,9% 358.005 16,2%
21. Transport, storage and communications 7.371 2,7% 58.404 2,6%
24. Hotel and catering industry 4.475 1,6% 60.839 2,8%
25. Real estate and renting. Business services 22.104 7,9% 198.916 9,0%
Total market services 69.767 25,1% 676.164 30,6%

4. CONSTRUCTION 19. Construction 11.222 4,0% 157.992 7,2%

26. Other services in CB 4.103 1,5% 68.745 3,1%

22. Agriculture, ranching, hunting and forestry 2.198 0,8% 28.750 1,3%

23. Fishing 550 0,2% 1.879 0,1%

Total others 6.851 2,5% 99.374 4,5%

MISSING VALUES Missing values 646 0,2% 30.175 1,4%

TOTAL 278.078 100,0% 2.206.687 100,0%

5. OTHERS

CBA CBB

1. ENERGY

2. INDUSTRY

3. MARKET SERVICES

 
Table 2: Sectorial distribution (number of observations) 

 
Table 3 shows the descriptive statistics for the different variables and databases. In 

general, firms in both databases are quite different. Among the main characteristics CBA 

firms show, in general, better financial autonomy, leverage, repayment capacity and 

return ratios, apart from higher size and growth rate; while CBB firms have a lower 

percentage of short term debt on total debt. 
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It has to be mentioned that, during the previous treatment of data, outlying values were 

corrected to prevent biases in the analysis. Outliers were defined here as those values 

which were more than two standard deviations away -above or below- from the 

population average. Once identified, there are different alternative procedures to treat 

them: (i) dropping those observations showing outlying values for some variables, (ii) 

treating outliers as missing values; or (iii) replacing outliers with “extreme values”, this is, 

with ±2 standard deviations from the mean. In this study, the last option was considered 

to be the best, as it allows keeping the element “very high/very low value” for the affected 

variable, which is a very useful input to the model; without losing the rest of the 

information for that observation. 

 
 OBSERVATIONS AVERAGE STANDARD 

DEVIATION MINIMUM MAXIMUM 

 CBA CBB CBA CBB CBA CBB CBA CBB CBA CBB 
Financial autonomy 114,239 1,181,931 36.89 21.01 205.58 230.33 -54,500.00 -111,299.60 100.61 50,700.05 
Adjusted financial autonomy 114,239 1,181,931 37.43 21.01 202.52 230.33 -54,500.00 -111,299.60 4,664.77 50,700.05 
Total leverage 114,239 832,531 545.11 638.71 8,709.45 10,292.04 -430,350.00 -1,683,222.00 1,615,608.00 1,652,362.00 
Financial leverage 114,239 - 257.39 - 4,878.93 - -270,400.00 - 685,457.60 - 
Financial expenses coverage–EBIT 99,811 955,520 23.09 10.82 850.26 125.61 -5,017.00 -14,157.00 230,953.00 18,421.00 
Financial exp. coverage–EBITDA 99,817 1,029,961 25.49 16.81 342.57 140.15 -5,057.00 -11,245.00 45,248.00 21,936.00 
Repayment capacity 99,811 540,466 12.79 -1,122.76 404.52 7,465,449.00 -37,741.00 -1.29 109 73,246.00 2.22 109 
Economic return 99,811 990,269 7.58 4.68 16.30 26.98 -1,657.14 -5,046.67 1,136.31 5,011.43 
Financial return 99,811 720,684 20.56 -3.08 107 642.04 2.59 1010 -99,805.98 -2.20 1013 74,121.08 5.94 1010 
Operating margin 99,814 990,293 -0.24 -0.44 984.19 840.18 -139,700.00 -230,800.00 215,100.00 469,300.00 
Resource generation capacity 99,817 1,073,503 0.54 0.03 69.03 1.99 -2,172.33 -614.00 18,778.05 754.00 
Acid Test 114,239 879,601 2.16 1.22 48.57 22.06 -73.13 -6,864.50 14,351.13 11,457.00 
General liquidity 114,239 1,196,106 2.82 2.49 49.31 40.75 -80.64 -6,874.00 14,351.13 16,231.00 
Short term debt / total debt 114,341 842,746 80.83 65.80 24.58 47.39 -241.36 -6,816.68 141.67 15,349.44 
S.t. interest-bearing debt/total debt 114,239 - 20.19 - 22.27 - -22.48 - 950.00 - 
Short term bank debt / total debt 114,322 - 17.25 - 20.59 - -18.41 - 800.00 - 
Net liquidity / liabilities 114,239 - -4.65 - 162.31 - -53,600.00 - 325.28 - 
Age 106,507 - 22.12 - 20.99 - 0.00 - 98.21 - 
Size (turnover) 144,973 1,197,427 21,931.25 724.48 63,533.11 3,690.67 0.00 0.10 501,761.80 2,595,844.00 
Size (total assets) 114,239 1,197,427 33,818.15 565.91 141,735.90 918.11 0.00 -0.10 1,328,777.00 6,510.40 
Size (number of employees) 144,906 1,166,703 123.88 7.27 328.93 7.77 0.00 0.10 2,673.48 34.32 
Growth (turnover) 144,960 1,180,377 100,828.20 28.89 2,230,055.00 163.83 -100.00 -99.99 7.13 107 2,552.08 
Growth (total assets) 114,239 1,197,351 120,203.60 19.95 3,022,850.00 66.74 -100.00 -99.91 1.06 108 575.23 
Public sector stockholding 114,239 - 0.04 - 0.19 - 0.00 - 1.00 - 
Financial institutions stockholding 114,239 - 0.02 - 0.15 - 0.00 - 1.00 - 
Group membership 144,973 1,197,427 0.85 0.79 0.36 0.40 0.00 0.00 1.00 1.00 
Energy sector 144,327 1,167,252 0.02 0.01 0.15 0.08 0.00 0.00 1.00 1.00 
Industry sector 144,327 1,167,252 0.37 0.19 0.48 0.40 0.00 0.00 1.00 1.00 
Market services sector 144,327 1,167,252 0.48 0.58 0.50 0.49 0.00 0.00 1.00 1.00 
Construction sector 144,327 1,167,252 0.08 0.14 0.27 0.34 0.00 0.00 1.00 1.00 
Other sectors 144,327 1,167,252 0.05 0.09 0.21 0.28 0.00 0.00 1.00 1.00 
GDP growth 144,973 1,197,427 3.02 3.41 1.38 0.90 -1.03 -1.03 5.06 5.06 
GDP growth t+1 144,973 1,197,427 3.11 3.50 1.35 0.76 -1.03 -1.03 5.06 5.06 

 
Table 3: Descriptive statistics 
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III.3.2. Dependent variable 
 

BdE’s CIR collects data on lending by financial institutions on a monthly basis according 

to the following criteria: direct loans to resident borrowers will have to be reported to the 

CIR if the institution’s overall business in Spain is 6,000 euros or more or if business in 

any other country is 60,000 or more. Direct loans to non-residents are reported from 

300,000 euros. 

 

The definition of default corresponds to the criteria used by the BdE’s Firm Assessment 

Unit, which coincides with the CIR and Basel II definitions. The borrower´s payments 

must be past due more than 90 days on any credit obligation21 (interest or principal). In 

addition to this, two conditions have to be met: (i) the unpaid amount must be higher than 

30.000 euros and (ii) the percentage of unpaid debt must be higher than 1% of the total 

debt. The objective was to eliminate so-called “technical defaults”: defaults that occur 

because of different reasons not related to the borrower’s credit quality, which usually 

match low amount defaults22. 

 

The distribution of the default variable generated according to these conditions in the 

training sample is shown in table 4. It can be observed that the default rate, which has 

progressively declined during the sample period for both databases, is always lower for 

CBB firms. The reasons for this are not very clear a priori; since, from the descriptive 

statistics presented above, no straightforward conclusion can be drawn regarding the 

credit quality of firms in both databases. One potential reason could be the differences in 

firm size among samples. In principle, the expected sign of the relationship between 

default and firm size should be negative (the higher the size, the lower the probability of 

default), as big firms are supposed to have better access to funds in financial markets. 

This fact has been confirmed by other works. However, informational imperfections can 

make such sign get positive for a certain sample, since information about defaults of 

small enterprises is likely to be less available than for big ones. According to this 

explanation, the larger size of CBA firms could justify their higher percentages of 

default23.  

 

                                                 
21 In this respect, we considered commercial and financial credit and euro-denominated debt instruments. 
22 It must be mentioned here that different definitions of default were analysed considering various limits, but the results of the models 
in terms of accuracy, number of eligible firms and significant variables were quite similar. 
23 This issue will come up again later on when the results of the estimations are presented.  
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In addition to this, another possible reason for the positive sign has to do with the default 

definition used here, which is far from legal proceedings or bankruptcy. In this sense, 

banks permissiveness regarding big firms’ 90-day (or similar short horizons) defaults 

might make such behaviour a common practice; while small firms would not be allowed 

by banks to do so. 

 
 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 
CBA 4.40 5.07 4.55 3.09 3.01 1.88 1.34 1.14 1.19 0.75 0.88 0.63 0.49 0.38 
CBB 2.97 2.45 2.35 1.81 1.74 1.29 0.93 0.75 0.60 0.63 0.64 0.45 0.49 0.24 

 

Table 4: Default rate (%) 

 

As mentioned in the introduction, the purpose of this article is to illustrate the general 

methodology that BdE is working on. The steps followed in the estimation were identical 

for CBA and CBB models, so, for brevity reasons, once the available data have been 

described, all presented results and comments from now on will only refer to the CBA 

model.  

 

 

III.4. PRESELECTION OF FACTORS: UNIVARIATE ANALYSIS 
 
A previous individual analysis of factors is a key issue to help deciding which of them to 

introduce in the multivariate model. This analysis consists of checking some aspects of 

variables´ statistical relationship with default, such as the sign of that relationship, its 

monotonicity or the variable’s predictive power of default. In addition to this, the 

correlations among variables must also be taken into account when deciding the 

composition of the multivariate model. 

 

III.4.1. Type of relationship between factors and default 
 

To analyze the type of relationship between factors and default, a graph was constructed 

for each variable showing in the x-axis that variable’s percentiles and in the y-axis the 

observed default frequency for each percentile. Such type of graphs allows coming to 

preliminary conclusions not only about the sign of the relationship, but also about its type 

(linear, quadratic, monotonic, etc). 
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The first step was to check whether the sign of the statistical relationship between default 

and every single factor was the expected one. Graphs 1 and 2 show, for instance, the 

cases of total leverage and financial return, respectively. While default seems to increase 

as total leverage rises, it falls as financial return increases; which are in both cases 

reasonable relationships. As for the type of relationship, the one between default and 

total leverage appears to be quite linear, while there seems to be some non-linear 

component in the relationship with financial return.  

 

 
       

Exhibit 1: Total leverage vs. Default          Exhibit 2: Financial return vs. default 

 

The second step was to study the monotonic character of these relationships, which is a 

desirable property for the good functioning of the final model. The aforementioned graphs 

confirm that the observed relationships are, in general, monotonic. 

 

Although for most variables the observed relationships are as expected, like in the 

examples presented above, the case of size variables is an exception. For every 

definition of size considered the observed sign is slightly positive, while the expected sign 

is negative. Exhibit 3 and 4 show the cases of total assets and number of employees. 

Two possible causes for this can be, as mentioned in the previous section, informational 

imperfections affecting small firm defaults or the specific default definition used. 

 

Anyway, these univariate relationships can be hiding interactions with other variables. 

Therefore, to come to real conclusions about the sign and type of relationship with 

default, it is necessary to wait for the results of the multivariate estimation, where the 

individual effects of every variable are controlled and the meaning of coefficients is easier 

to interpret. 
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Exhibit 3: Total assets vs. default   Exhibit 4: Number of employees vs. default 

 
III.4.2.  Predictive power of individual factors 
 

Once the type, sign and monotonicity of each variable’s relationship with default has 

been studied, it must be determined which factors have a higher explanatory power. For 

this purpose we use the ROC curve (Receiver Operating Characteristic), which measures 

the ability of a variable or model (combination of variables) to correctly classify the 

dependent variable for a certain sample. Such curve is described in detail in Box 1.  

 

Box 1: ROC curves 
 

The theory behind ROC analysis comes from statistical decision theory and was originally used 

during World War II to solve some practical problems with radar signals. More recently it has 

spread into other fields, such as the evaluation of the ability of discrete-choice econometric 

models to correctly classify individuals.  

 

The predictive power of a discrete-choice model such as the logit is measured through its 

sensibility and its specificity. The sensibility (or fraction of true positives -FTP-) is the probability 

of correctly classifying and individual whose observed situation is “default”, while the specificity 

is the probability of correctly classifying an individual whose observed situation is “no default”. 

Given a model to predict default as a function of a series of individuals’ characteristics, if the 

sample data are presented in a contingency table showing the model result (probability of 

default generated by the model higher or lower than a given threshold) and the observed 

situation (“default” or “not default”), then estimating the sensibility and specificity of the model is 

straightforward. 
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  Observed situation 

  Default No default 

Default  
(probability of default higher 

than threshold) 

True 

positive 

(TP) 

False 

positive (FP) Model 
predicti

on 
No default 
(probability of default lower than 

threshold) 

False 

negative 

(FN) 

True 

negative 

(TN) 

  TP+FN TN+FP 

 

Sensibility and specificity can be easily estimated for this model -for a given threshold- as: 

 

Sensibility = TP/(TP+FN) = FTP (fraction of true positives) = 1- FFN (fraction of false negatives)

Specificity = TN/(TN+FP) = FTN (fraction of true negatives) = 1-FFP (fraction of false positives) 

 

The ROC curve is the graphic representation of the relationship between the sensibility and the 

specificity of a model for all possible thresholds.  

 

Through this representation of the pairs (1-specificity, 

sensibility) obtained for each potential value of the 

threshold, the ROC curve gives us a global 

representation of diagnostic accuracy. ROC curve has 

a positive slope, reflecting the existing trade-off 

between sensibility and specificity (the only way to 

achieve a higher sensibility is by reducing specificity). 

Should discrimination be perfect (100% sensibility and 

100% specificity), the ROC curve would go through the upper-left corner. But if the model is not 

able to discriminate among groups, the ROC curve becomes the diagonal connecting the lower-

left and the upper-right corners. This is, predictive accuracy increases as the curve shifts from 

the diagonal towards that corner, and the area below the ROC curve can be used as an index 

for the model’s global accuracy. Maximum accuracy would then correspond to an area equal to 

1 and random prediction to an area equal to 0.5, while areas below 0.5 would indicate negative 

prediction; this is, there is a relationship between predicted values and truth, but it is contrary to 

the expected one. Then, ROC curves are useful for assessing a model’s global performance 

(area below the curve), as well as for comparing models (comparison amongst curves) or 

probability thresholds (comparison amongst different points on a curve).  

 

0 1

1 

FFP = 1 - specificity 

FTP = 
sensibility 
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For every continuous variable considered, a univariate logit model was estimated to 

predict default, from which the corresponding ROC curves were derived. The results are 

presented in table 5. This methodology, however, is not applicable to discrete variables. 

The evaluation of such factors’ predictive power was done by analyzing the respective 

graphs showing average default rate for each possible value of the dummy variable. In 

this sense, significant differences among default rates for different values of the dummy 

variable would suggest that such a factor is potentially relevant to the prediction of 

default. 

 
SOLVENCY PROFITABILITY LIQUIDITY OTHERS 

Financial autonomy 0.7021 Economic return 0.6295 Acid test 0.6339 Age 0.5559 
Adjusted financial autonomy 0.6999 Financial return 0.6685 General liquidity 0.6243 Size (turnover) 0.5515 
Total leverage 0.6913 Operating margin 0.5660 Short term debt/total debt 0.6224 Size (total assets) 0.6433 
Financial leverage 0.7356 Resource gen. capacity 0.4576 S.t. interest-bearing debt/total debt 0.6296 Size (employees) 0.6058 
Fin. exp. coverage-EBIT 0.7093   Short term bank debt / total debt 0.6412 Growth (turnover) 0.4482 
Fin. exp. coverage-EBITDA 0.7037   Net liquidity/liabilities 0.6701 Growth (total assets) 0.5491 
Repayment capacity 0.3494     GDP growth t 0.6684 
      GDP growth t+1 0.6594 

 

Table 5: Area below ROC curve 

 

According to the results in table 5, the most powerful factors in terms of default prediction 

seem to be those having to do with solvency. In fact, some of them even reach ROC area 

values above 0.7. Financial leverage, for instance, appears as a very good individual 

predictor of default, with a ROC area of 0.74. As for profitability ratios, they show in 

general a lower predictive ability. Among them, financial and economic returns stand out 

from the others. As regards liquidity variables, net liquidity on liabilities is the best 

performing one, followed by short term bank debt on total debt and the acid test. Also 

GDP growth seems to play a significant role in default prediction, as well of size in terms 

of total assets. Finally, the analysis of the graphs constructed for discrete variables 

revealed that there seem to be significant differences in default rates due to financial 

institutions stockholding, group membership and economic sector.  

 

However, it must be pointed out that these preliminary results just suggest which 

variables have the best predictive power when used individually. The best multivariate 

model will not necessarily include these ones, as each ratio’s predictive capacity also 

depends on its interaction with other factors in the model.  
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In addition to this, it is not only the individual predictive power that has to be taken into 

account when deciding which factors to include in the multivariate model, but also other 

aspects such as: what is the ratio really measuring, whether the sign of its estimated 

coefficient is sensible, etc. Then, a ratio that a priori does not seem to be very useful can 

be included in the final model or vice versa.  

 

 

III.5. MODEL SELECTION: MULTIVARIATE ANALYSIS 
 
Starting from the univariate analysis and after checking the colinearity relationships 

among variables, numerous models including different groups of variables were tested 

using forward stepwise selection. This process meant not only deciding which particular 

variables to choose from the set previously defined, but also trying different model 

designs. In this sense, some examples of the main possibilities tested are: linear vs non-

linear models, including previous default or not, models including the economic sector 

through dummy variables vs different models by sector; and models including size 

variables vs different models by size. 

 

Among the main conclusions from the numerous tentative estimations we must underline 

that non-linear logits, which also include the quadratic terms of variables (both squares 

and cross products), get significantly better results in terms of predictive power than 

linear ones. This fact is consistent with previous literature, as well as with international 

rating agencies´ experience, and confirms the preliminary results obtained from the 

univariate analysis, which indicated some type of non-linear behaviour in certain 

variables. In addition to this, the models perform even better when previous default24 is 

included as an additional factor; and macroeconomic environment was also found to be 

very significant in default prediction. In this respect, it must be noted that various 

variables capturing macroeconomics were tested (interest rates, stock indexes, 

consumer price indexes, gross domestic product (GDP), etc), but the best performing 

one was GDP growth. 

 

 

                                                 
24 Previous default was defined as a dummy variable taking value 1 if the firm had defaulted the previous year and zero otherwise. 
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As for the role of the economic sector, only the construction sector was found to perform 

better with its own specific model than with a general one for all sectors. This is a natural 

result, since construction firms generally present financial structures which are 

significantly different from firms in other economic sectors. 

 

The best performing models for CBA database reach ROC areas around 0.92, which is a 

good figure according to previous literature. Table 6 presents, as an example, the 

estimation results25 of a general model for all sectors; which therefore includes the 

economic sector through dummy variables.  

 
Number of obs 90792 
Log likelihood -4775.1431 
       

Default Coef. Std. Err. z P>|z|      [95% Conf. Interval] 

Previous default                 4.948075 .0664364 74.48 0.000 4.817862 5.078288 
Financial autonomy (F1) -.0080397 .0009478 -8.48 0.000 -.0098973 -.006182 
Total leverage (F2) 7.12e-06 2.50e-06 2.85 0.004 2.23e-06 .000012 
Economic return (F3) -.0220226 .0028432 -7.75 0.000 -.0275951 -.0164501 
S.t. bank debt/total debt (F4) .0359708 .0053597 6.71 0.000 .0254659 .0464757 
Net liquidity/liabilities (F5) -.0049072 .0019983 -2.46 0.014 -.0088236 -.0009903 
Size (total assets) (F6) 3.90e-06 5.46e-07 7.14 0.000 2.83e-06 4.97e-06 
Energy sector -4.17434 .1846912 -22.60 0.000 -4.536328 -3.812352 
Industry sector -4.37221 .0939173 -46.55 0.000 -4.556285 -4.188136 
Market services sector -4.62329 .0879246 -52.58 0.000 -4.795619 -4.450961 
Construction sector -4.340172 .1278889 -33.94 0.000 -4.590829 -4.089514 
Other sectors -4.250317 .1502603 -28.29 0.000 -4.544822 -3.955812 
GDP growth t -.1703206 .0176309 -9.66 0.000 -.2048766 -.1357646 
       
Squares       
F12  -3.24e-07 4.59e-08 -7.06 0.000 -4.14e-07 -2.34e-07 
F22  -7.96e-12 2.93e-12 -2.71 0.007 -1.37e-11 -2.21e-12 
F42 -.0003472 .0000805 -4.31 0.000 -.000505 -.0001894 
F52  -.0000527 7.68e-06 -6.86 0.000 -.0000677 -.0000376 
F62 -2.92e-12 4.89e-13 -5.97 0.000 -3.88e-12 -1.96e-12 
F1·F2 .0000272 6.16e-06 4.42 0.000 .0000152 .0000393 
F1·F3 -.0001676 .000027 -6.21 0.000 -.0002206 -.0001147 
F1·F4  -.0002911 .0000469 -6.20 0.000 -.0003831 -.0001991 
F2·F3 8.73e-08 4.69e-08 1.86 0.063 -4.72e-09 1.79e-07 
F5·F6 4.01e-08 8.19e-09 4.89 0.000 2.40e-08 5.61e-08 

       
Area under ROC curve 0.9036      

 

Table 6: General model for CBA 

 

In this case, the model predicts probability of default based on: previous default, five 

financial ratios (financial autonomy, total leverage, economic return, short term bank debt 

on total debt and net liquidity on liabilities), size, the five sectoral dummies, GDP growth 

and the squares and crossed products of some of these variables26. All signs except the 

one of size are as expected. Then, even when controlling for other variables’ effects in a 

multivariate model, size continues showing a “wrong” sign.  

                                                 
25 This estimation used period 1991-2003 so as to keep 2004 data for validation. 
26 Given the good predictive results achieved by the models, non-linear behaviours seem to be well captured by quadratic terms, so 
cubic terms were not tested. 
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In order to try to solve the potential informational imperfections commented above, which 

could be the reason for this, other definitions of default for different time horizons were 

considered, but the result was the same. Besides, dropping the size variable from the 

model worsened results in terms of predictive accuracy, so the decision was to keep it. 

Anyway, the value of its estimated coefficient -and therefore its impact on predicted 

probability of default- is very low. 

 

This design results in a ROC area of 0.90, which means nothing but a global measure of 

the model’s accuracy. As explained in the box about ROC curves, the percentage of 

errors in terms of “false positives” or “false negatives” will depend on the chosen 

threshold. After ordering the observations by probability of default, which is the model’s 

output, a decision has to be made which specific value of probability of default to set as a 

benchmark. This will determine the number of eligible (estimated probability of default 

lower than the threshold) and non-eligible (estimated probability of default higher than the 

threshold) firms and, consequently, the number of classification errors; so it represents a 

crucial decision. If the threshold is very low, most observed defaults will be correctly 

classified (high sensibility), but a lot of false positives will arise; e.g., many firms which 

did not default will be classified as “non eligible”. On the other hand, if we allow for a 

higher threshold, more firms will be considered eligible and false positives will be 

reduced, but false negatives will increase. For the purpose of collateral assessment, the 

aim is to minimize the number of false negatives subject to getting a significant amount of 

collateral, this is, a significant number of eligible enterprises. In this respect, the 

percentage of false negatives will serve as input to the internal ECAF performance 

monitoring process, which comprises both an annual rule and a multi-period assessment. 

 

See for example the case of the model in table 6. Table 7 shows its predictive results in 

2004 for four different thresholds. For a benchmark of 0.10%, which is the Eurosystem’s 

credit quality threshold27, this model classifies 124 firms as eligible. None of them 

defaulted in the subsequent twelve months. The same happens for thresholds 0.20% and 

0.30%: the percentage of observed defaults detected by the model is 100%. For a 

threshold probability equal to 0.40%, however, this model would correctly classify 98% of 

observed defaults (56 firms) and would be wrong in the remaining 2% of the cases (1 

firm).  

                                                 
27 The Eurosystem’s credit quality threshold is defined in terms of a “single A” credit assessment (which means a minimum long-term 
rating of A- by Fitch or Standard & Poor’s, or A3 by Moody’s), which is considered equivalent to a probability of default over a one-
year horizon of 0.10%.   
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On the other hand, for a 0.40% threshold the model would correctly classify 27% of firms 

which did not default (2,448 firms), and would fail in 73% of them (6,514 firms). In other 

words, for that given threshold the model would classify 2,449 firms as eligible in 2004 

and only one of them defaulted during the subsequent year; which means that 0.04% of 

the eligible database defaulted. This is the relevant error for the annual back-testing rule 

of the ECAF performance monitoring process, and this figure fulfils the conditions to pass 

such test28. In fact, for thresholds 0.10%, 0.20% and 0.30%, as table 7 shows, the error 

in terms of false negatives and, consequently, of defaults within the eligible database, 

would be zero. Then, for 2004 this system would comply with ECAF rules for all 

thresholds considered here. 

 
OBSERVED   OBSERVED  

p*=0.10% Default Not 
default TOTAL  p*=0.20% Default Not 

default TOTAL 

Default   
(not eligible) 57 8,838 8,895 

 Default   
(not eligible) 57 8,349 8,406 

PREDICTED 
Not default 

(eligible) 0 124 124 
 

PREDICTED 
Not default 

(eligible) 0 613 613 

 TOTAL 57 8,962 9,019   TOTAL 57 8,962 9,019 

Percentage of defaults among eligible firms: 0.00%  Percentage of defaults among eligible firms: 0.00% 
           

OBSERVED   OBSERVED  
p*=0.30% Default Not 

default TOTAL  p*=0.40% Default Not 
default TOTAL 

Default   
(not eligible) 57 7,518 7,575  Default   

(not eligible) 56 6,514 6,570 
PREDICTED 

Not default 
(eligible) 0 1,444 1,444 

 
PREDICTED 

Not default 
(eligible) 1 2,448 2,449 

 TOTAL 57 8,962 9,019   TOTAL 57 8,962 9,019 

Percentage of defaults among eligible firms: 0.00%  Percentage of defaults among eligible firms: 0.04% 
 

Table 7: Predictive results for general model in 2004 (number of firms) 

 

If we replicated this exercise for 1991-2004 predictions -where 99,811 observations were 

assigned a predicted probability of default-, we would get that the percentage of defaults 

within the eligible database would be 0% for a 0.10% threshold (1,478 eligible 

observations). For higher thresholds, the number of eligible observations would obviously 

increase (8,071 eligible observations for a 0.20% benchmark, 19,058 for a 0.30% and 

31,720 for a 0.40%) and the system would still be acceptable in terms of the ECAF 

performance monitoring process.  

                                                 
28 These conditions are part of the ECAF internal procedures. 
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In order to get an idea of how this model discriminates between eligible and not eligible 

firms, table 8 compares their general characteristics by showing the average ratios of 

eligible (8,071) and not eligible observations (91,740) for the whole sample and a 

threshold equal to 0.10%. 

 

Variable Average  
eligible 

Average    
not-eligible 

Financial autonomy 69.53 24.73 
Adjusted financial autonomy 70.24 25.00 
Total leverage 153.11 1,198.69 
Financial leverage 28.76 593.15 
Financial expenses coverage - EBIT 305.95 35.18 
Financial expenses coverage - EBITDA 254.17 46.37 
Repayment capacity 0.62 16.40 
Economic return 40.37 6.00 
Financial return 69.30 51.18 
Operating margin 20.65 -5.41 
Resource generation capacity 0.07 0.45 
Acid Test 12.63 5.01 
General liquidity 13.27 5.90 
Short term debt / total debt 94.34 75.15 
Short term interest-bearing debt / total debt 12.69 17.89 
Short term bank debt / total debt 9.87 15.27 
Net liquidity / liabilities 38.67 -8.45 
Age 18.77 21.58 
Size (turnover) 46,061.04 29,508.49 
Size (total assets) 127,817.50 46,889.78 
Size (employees) 154.19 153.42 
Growth (turnover) 199.40 598.59 
Growth (total assets) 15.63 198.48 
Public sector stockholding 0.03 0.04 
Financial institutions stockholding 0.06 0.02 
Group membership 0.91 0.89 

 
 

Table 8: Comparison of average ratios: General model in 1991-2004 

 
As explained above, many different model designs were tested, among which sectoral 

models played an important role. It has already been mentioned that only the 

construction sector performed slightly better when using its own sectoral model than 

applying a general model for all sectors. To briefly illustrate an additional example of 

estimations, a few results of a sectoral construction model are commented below. 
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The composition and results of the specific model for the construction sector are very 

similar to the mentioned general one, although with some variations29. In particular, the 

variables on which the prediction is based for the construction sector are: previous 

default, four financial ratios (financial autonomy, total leverage, financial return and short 

term bank debt on total debt), size, GDP growth and the squares of some of these 

variables. The results in terms of signs of the variables and of predictive accuracy are 

almost the same as for the general model, reaching a ROC area of 0.90 and almost 

equal figures for the percentage of defaults within the eligible database for the different 

thresholds (the results in terms of the ECAF monitoring process are almost identical). 

 

The main difference to be pointed out was the higher number of eligible enterprises, most 

of them coming from the construction sector. This is a logical result, since construction 

firms generally present high leverage ratios because of the type of activity they develop; 

so its functioning is better modelled by their own specific model than by the general one, 

which penalizes them by comparison with the other four sectors. For example, while for a 

threshold of 0.10% the general model classified 12 4 firms as eligible in 2004, this model 

produced 136 eligible enterprises. The figures for the whole sample 1991-2004 (99,811 

observations) are, for the same threshold, 1,478 eligible observations for the general 

model and 1,576 for the sectoral specification. 

 

 

III.6. SUMMARY AND CONCLUSION 
 

BdE is working on a new methodology based on logit models to be incorporated in the 

near future to its in-house credit assessment system. The purpose is twofold: (i) 

enlarging the methodological spectrum of BdE, presently consisting of an expert-based 

assessment; and (ii) producing estimated probabilities of default. 

 

The relevant information needed for the estimation of such models -i.e. dependent and 

independent variables- is available from internal BdE databases. A wide range of 

financial ratios and other factors has been considered as potential determinant of default. 

From the preliminary analysis it can be said that, in general, the relationship between 

default and these variables behaves as expected by theoretical economic reasoning.  

                                                 
29 In this case, the specific sectoral model as applied to the construction firms and the general model presented before was applied to 
the other four sectors after a re-estimation without the observations belonging to the construction sector.   
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In particular, most signs fit in the expected ones and the relationships seem to be 

monotonic. Only the case of size variables represents an exception, as the sign appears 

to be slightly positive whereas the expected one is negative. Two possible explanations 

for this have been put forward. The first one is based on the effect of informational 

imperfections affecting small firm defaults; which can result in higher default rates for big 

firms than for small firms in a given sample. The second one has to do with the default 

definition used and banks permissiveness to big firms defaults within a certain time 

period. 

 

The univariate analysis pointed at solvency ratios as the most powerful factors for default 

prediction. Among them, financial leverage showed the highest value for the ROC area, 

reaching 0.74. After this, multivariate analysis was carried out testing a huge number of 

model designs. Although there is still much work to be done, several general conclusions 

can be drawn from it. Firstly, non-linear logits get significantly better results in terms of 

predictive power than linear ones. Secondly, the models perform even better when 

previous default is included as an additional factor. Thirdly, macroeconomic environment 

was also found to be very significant in default prediction, with GDP growth as the best 

performing factor among those capturing macroeconomics. As for the role of the 

economic sector, only the construction sector was found to perform better with its own 

specific model than with a general one for all sectors. An important point in this respect is 

that, although the composition of the construction sectoral model is quite similar to the 

general one, the sector-specific model produces a higher number of eligible enterprises 

without incurring in higher errors.   

 

Regarding particular results, some models reach ROC areas around 0.92, which 

represents a good figure according to previous literature. In addition to this, the best 

performing models would allow BdE to significantly increase the eligible database while 

continuing easily fulfilling the ECAF performance monitoring process. The models 

presented here, for instance, would have been in the green zone during the analyzed 

period if the threshold probability had been set equal to 0.10%, the Eurosystem’s credit 

quality benchmark; and even for thresholds of 0.20% or 0.30%. In this case, these 

systems are reliable and safe tools for collateral selection. 
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Financial autonomy (%) equity× 100 / liabilities 

Adjusted financial autonomy (%) equity× 100 / (liabilities - reserves for risks and expenses) 

Total leverage (%) loan funds× 100 / equity 

Financial leverage (%) (long term loan funds + short term cost-bearing resources)× 100 / 

Financial expenses coverage - EBIT (net operating result + financial income) / financial expenses 

Financial expenses coverage - EBITDA gross operating result / financial expenses 

Repayment capacity (years) total debt / ordinary generated resources 

Economic return (%) 
(net operating result + financial income + positive translation 

differences)× 100 / total assets average 

Financial return (%) ordinary result× (1-t)× 100 / equity average 

Operating margin (%) net operating result× 100 / net turnover 

Resource generation capacity (veces) generated resources / operating income 

Acid Test (times) current assets without stock / short term loan funds 

General liquidity (times) current assets / current liabilities 

Short term debt / total debt (%) short term debt× 100 / total debt 

Short term interest-bearing debt / total short term interest-bearing debt× 100 / total debt 

Short term bank debt / total debt (%) short term bank debt× 100 / total debt 

Net liquidity / liabilities (%) (working capital - NOF)× 100 / liabilities 

Age (years) Firm age 

Turnover (thousand euros) 
Total assets (thousand euros) Size 

Number of employees (number) 
Turnover growth (%) 

Growth 
Balance-sheet growth (%) 

Public sector stockholding Dummy equal to 1 if public sector direct participation in capital > 0 

Financial institutions stockholding Dummy equal to 1 if financial institutions participation in capital  >0

Group membership Dummy equal to 1 if the firm is a member of a group 

Energy sector (dummy equal to 1 if the firm belongs to the 

Industry sector (dummy equal to 1 if the firm belongs to the 

Market services sector (dummy equal to 1 if the firm belongs to 

Construction sector (dummy equal to 1 if the firm belongs to the 

Sector 

Other sectors (dummy equal to 1 if the firm belongs to any other 

GDP growth year t (%) 
Macroeconomic environment 

GDP growth year t+1(%) 
 

Table 9: ANNEX – Definition of exogenous variables 
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IIVV..  AADDVVAANNTTAAGGEESS  AANNDD  DDIISSAADDVVAANNTTAAGGEESS  OOFF  SSUUPPPPOORRTT  

VVEECCTTOORR  MMAACCHHIINNEESS  ((SSVVMMSS))  

                                                  L. AURIA / R. MORO 

   DEUTSCHE BUNDESBANK / DEUTSCHES INSTITUT FÜR WIRTSCHAFTSFORSCHUNG 
 

IV.1. INTRODUCTION 
 

There is a plenty of statistical techniques, which aim at solving binary classification 

tasks such as the assessment of the credit standing of enterprises. The most popular 

techniques include traditional statistical methods like linear Discriminant Analysis 

(DA) and Logit or Probit Models and non-parametric statistical models like Neural 

Networks. SVMs are a new promising non-linear, non-parametric classification 

technique, which already showed good results in the medical diagnostics, optical 

character recognition, electric load forecasting and other fields. Applied to solvency 

analysis, the common objective of all these classification techniques is to develop a 

function, which can accurately separate the space of solvent and insolvent 

companies, by benchmarking their score values. The score reduces the information 

contained in the balance sheet of a company to a one-dimensional summary 

indicator, which is a function of some predictors, usually financial ratios. Another aim 

of solvency analysis is to match the different score values with the related probability 

of default (PD) within a certain period. This aspect is especially important in the 

Eurosystem, where credit scoring is performed with the target of classifying the 

eligibility of company credit liabilities as a collateral for central bank refinancing 

operations, since the concept of eligibility is related to a benchmark value in terms of 

the annual PD. 

 

The selection of a classification technique for credit scoring is a challenging problem, 

because an appropriate choice given the available data can significantly help 

improving the accuracy in credit scoring practice. On the other hand, this decision 

should not be seen as an “either / or” choice, since different classification techniques 

can be integrated, thus enhancing the performance of a whole credit scoring system.  
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In the following paper SVMs are presented as a possible classification technique for 

credit scoring. After a review of the basics of SVMs and of their advantages and 

disadvantages on a theoretical basis, the empirical results of an SVM model for credit 

scoring are presented. 

 

 

IV.2. BASICS OF SVMS 
 

SVMs are a new technique suitable for binary classification tasks, which is related to 

and contains elements of non-parametric applied statistics, neural networks and 

machine learning. Like classical techniques, SVMs also classify a company as 

solvent or insolvent according to its score value, which is a function of selected 

financial ratios. But this function is neither linear nor parametric. The formal basics of 

SVMs will be subsequently briefly explained. The case of a linear SVM, where the 

score function is still linear and parametric, will first be introduced, in order to clarify 

the concept of margin maximisation in a simplified context. Afterwards the SVM will 

be made non-linear and non-parametric by introducing a kernel. As explained further, 

it is this characteristic that makes SVMs a useful tool for credit scoring, in the case 

the distributional assumptions about available input data can not be made or their 

relation to the PD is non-monotone. 

 

IV.2.1. Margin Maximization 
 

Assume, there is a new company j, which has to be classified as solvent or insolvent 

according to the SVM score. In the case of a linear SVM the score looks like a DA or 

Logit score, which is a linear combination of relevant financial ratios xj = (xj1, xj2, 

…xjd), where xj is a vector with d financial ratios and xjk is the value of the financial 

ratio number k for company j, k=1,…,d. So zj , the score of company j, can be 

expressed as: 

 

bxwxwxwz jddjjj ++++= ...2211 .       (1) 
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In a compact form:  

 

 bwxz T
jj +=                  (1’) 

 

 where: 

 w is a vector which contains the weights of the d financial ratios and b is a 

constant. The comparison of the score with a benchmark value (which is equal 

to zero for a balanced sample) delivers the “forecast” of the class – solvent or 

insolvent – for company j. 

 

In order to be able to use this decision rule for the classification of company j, the 

SVM has to learn the values of the score parameters w and b on a training sample. 

Assume this consists of a set of n companies i = 1, 2, …,n. From a geometric point of 

view, calculating the values of the parameters w and b means looking for a 

hyperplane that best separates solvent from insolvent companies according to some 

criterion. The criterion used by SVMs is based on margin maximization between the 

two data classes of solvent and insolvent companies. The margin is the distance 

between the hyperplanes bounding each class, where in the hypothetical perfectly 
separable case no observation may lie. By maximising the margin, we search for the 

classification function that can most safely separate the classes of solvent and 

insolvent companies. Exhibit 1 represents a binary space with two input variables. 

Here crosses represent the solvent companies of the training sample and circles the 

insolvent ones. The threshold separating solvent and insolvent companies is the line 

in the middle between the two margin boundaries, which are canonically 

represented as xTw+b=1 and xTw+b=-1. Then the margin is 2 / ||w||, where ||w|| is the 

norm of the vector w.  

 

In a non-perfectly separable case the margin is “soft”. This means that in-sample 

classification errors occur and also have to be minimized. Let ξi be a non-negative 

slack variable for in-sample misclassifications. In most cases ξi =0, that means 

companies are being correctly classified. In the case of a positive ξi the company i of 

the training sample is being misclassified. A further criterion used by SVMs for 

calculating w and b is that all misclassifications of the training sample have to be 

minimized. 
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Let yi be an indicator of the state of the company, where in the case of solvency  

yi =-1 and in the case of insolvency yi =1. By imposing the constraint that no 
observation may lie within the margin except some classification errors, SVMs 

require that either xi
 Tw+b ≥ 1-ξi or xi

Tw+b ≤ -1+ξi, which can be summarized with: 

 

( ) .,...,1,1 nibwxy i
T

i i
=∀−≥+ ξ        (3) 

 

                      
Source: W. Härdle, R.A. Moro, D. Schäfer, March 2004, Rating Companies with 

Support Vector Machines, Discussion Paper Nr. 416, DIW Berlin. 

Exhibit 1: Geometrical Representation of the SVM Margin 

 

The optimization problem for the calculation of w and b can thus be expressed by:  
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ξ−≥+                             (3) 

    0≥iξ            (4) 

 

In the first part of (2) we maximise the margin 2 / ||w|| by minimizing ||w||2/ 2, where 

the square in the norm of w comes from the second term, which originally is the sum 

of in-sample misclassification errors ξi  / ||w|| times the parameter C. Thus SVMs 

maximize the margin width while minimizing errors. This problem is quadratic i.e. 

convex. 
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C = “capacity” is a tuning parameter, which weighs in-sample classification errors and 

thus controls the generalisation ability of an SVM. The higher C, the higher is the 

weight given to in-sample misclassifications, the lower is the generalization of the 

machine. Low generalisation means that the machine may work well on the training 

set but would perform miserably on a new sample. Bad generalisation may be a 

result of overfitting on the training sample, for example, in the case that this sample 

shows some untypical and non-repeating data structure. By choosing a low C, the 

risk of overfitting an SVM on the training sample is reduced. It can be demonstrated 

that C is linked to the width of the margin. The smaller C, the wider is the margin, the 

more and larger in-sample classification errors are permitted. 

 

Solving the above mentioned constrained optimization problem of calibrating an SVM 

means searching for the minimum of the following Lagrange function: 
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where α i ≥  0 are the Lagrange multipliers for the inequality constraint (3) and νi ≥ 0 

are the Lagrange multipliers for the condition (4). This is a convex optimization 

problem with inequality constraints, which is solved my means of classical non-linear 

programming tools and the application of the Kuhn-Tucker Sufficiency Theorem. 

The solution of this optimisation problem is given by the saddle-point of the 

Lagrangian, minimised with respect to w, b, and ξ and maximised with respect to α  

and ν. The entire task can be reduced to a convex quadratic programming problem in 

αi. Thus, by calculating αi, we solve our classifier construction problem and are able 

to calculate the parameters of the linear SVM model according to the following 

formulas: 
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As can be seen from (6), αi, which must be non-negative, weighs different companies 

of the training sample. The companies, whose αi are not equal to zero, are called 

support vectors and are the relevant ones for the calculation of w. Support vectors 

lie on the margin boundaries or, for non-perfectly separable data, within the margin. 

By this way, the complexity of calculations does not depend on the dimension of the 

input space but on the number of support vectors. Here x+1 and x-1 are any two 

support vectors belonging to different classes, which lie on the margin boundaries. 

 

By substituting (6) into the score (1’), we obtain the score zj as a function of the scalar 

product of the financial ratios of the company to be classified and the financial ratios 

of the support vectors in the training sample, of αi, and of yi. By comparing  zj  with a 

benchmark value, we are able to estimate if a company has to be classified as 

solvent or insolvent. 
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α  (8) 

 

IV.2.2. Kernel-transformation 
 

In the case of a non-linear SVM, the score of a company is computed by 

substituting the scalar product of the financial ratios with a kernel function.  
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Kernels are symmetric, semi-positive definite functions satisfying the Mercer 

theorem. If this theorem is satisfied, it is ensured that there exists a (possibly) non-

linear map Φ  from the input space into some feature space, such that its inner 

product equals the kernel. The non-linear transformation Φ  is only implicitly defined 

through the use of a kernel, since it only appears as an inner product. 

 

)(),(),( jiji xxxxK ΦΦ= .        (9) 
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This explains how non-linear SVMs solve the classification problem: the input space 

is transformed by Φ into a feature space of a higher dimension, where it is easier to 

find a separating hyperplane. Thus the kernel can side-step the problem that data are 

non-linearly separable by implicitly mapping them into a feature space, in which the 

linear threshold can be used. Using a kernel is equivalent to solving a linear SVM in 

some new higher-dimensional feature space. The non-linear SVM score is thus a 

linear combination, but with new variables, which are derived through a kernel 

transformation of the prior financial ratios. The score function does not have a 

compact functional form, depending on the financial ratios but on some 

transformation of them, which we do not know, since it is only implicitly defined. It can 

be shown that the solution of the constrained optimisation problem for non-linear 

SVM is given by: 
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But, according to (7’) and (8’), we do not need to know the form of the function Φ  in 

order to be able to calculate the score. Since for the calculation of the score (8) the 

input variables are used as a product, only the kernel function is needed in (8’). As a 

consequence,  Φ and w are not required for the solution of a non-linear SVM.  

 

One can choose among many types of kernel functions. In practice, many SVM 

models work with stationary Gaussian kernels with an anisotropic radial basis. 
The reason why is that they are very flexible and can build fast all possible relations 

between the financial ratios. For example linear transformations are a special case of 

Gaussian kernels.  

 

                  (10) 

 

 

2/)()( 12

),( ij
T

ij xxrxx
ji exxK −Σ−− −−

=



56 

Here Σ is the variance-covariance matrix of all financial ratios of the training set. This 

kernel first transforms the “anisotropic” data to the same scale for all variables. This 

is the meaning of “isotropic”. So there is no risk that financial ratios with greater 

numeric ranges dominate those with smaller ranges. The only parameter which has 

to be chosen when using Gaussian kernels is r, which controls the radial basis of the 

kernel. This reduces the complexity of model selection. The higher is r, the smoother 

is the threshold which separates solvent from insolvent companies.30 

 

Gaussian kernels non-linearly map the data space into a higher dimensional space. 

Actually the definition of a Gaussian process by specifying the covariance function 

(depending on the distance of the company to be evaluated from each company of 

the training sample) avoids explicit definition of the function class of the 
transformation. There are many possible decompositions of this covariance and 

thus also many possible transformation functions of the input financial ratios. 

Moreover each company shows its own covariance function, depending on its relative 

position within the training sample. That is why the kernel operates locally. The value 

of the kernel function depends on the distance between the financial ratios of the 

company j to be classified and respectively one company i of the training sample. 

This kernel is a normal density function up to a constant multiplier. xi is the center of 

this kernel, like the mean is the center of a normal density function. 

 

 

IV.3. WHAT IS THE POINT IN USING SVMS AS A CLASSIFICATION 

TECHNNIQUE? 
 

All classification techniques have advantages and disadvantages, which are more or 

less important according to the data which are analysed, and thus have a relative 

relevance. SVMs can be a useful tool for insolvency analysis, in the case of non-

regularity in the data, for example when the data are not regularly distributed or have 

an unknown distribution. It can help evaluate information, i.e. financial ratios which 

should be transformed prior to entering the score of classical classification 

techniques.  

                                                 
30 By choosing different r values for different input values, it is possible to rescale outliers. 
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The advantages of the SVM technique can be summarised as follows:  

 

• By introducing the kernel, SVMs gain flexibility in the choice of the form of the 

threshold separating solvent from insolvent companies, which does not have to be 

linear and even does not have to have the same functional form for all data, since 

its function is non-parametric and operates locally. As a consequence they can 

work with financial ratios, which show a non-monotone relation to the score and to 

the probability of default, or which are non-linearly dependent, and this without 

needing any specific work on each non-monotonous variable. 

• Since the kernel implicitly contains a non-linear transformation, no assumptions 

about the functional form of the transformation, which makes data linearly 

separable, are necessary. The transformation occurs implicitly on a robust 

theoretical basis and human expertise judgement in advance is not needed.  

• SVMs provide a good out-of-sample generalization, if the parameters C and r (in 

the case of a Gaussian kernel) are appropriately chosen. This means that, by 

choosing an appropriate generalization grade, SVMs can be robust, even when 

the training sample has some bias. 

• SVMs deliver a unique solution, since the optimality problem is convex. This is an 

advantage compared to Neural Networks, which have multiple solutions 

associated with local minima and for this reason may not be robust over different 

samples. 

• With the choice of an appropriate kernel, such as the Gaussian kernel, one can 

put more stress on the similarity between companies, because the more similar 

the financial structure of two companies is, the higher is the value of the kernel. 

Thus when classifying a new company, the values of its financial ratios are 

compared with the ones of the support vectors of the training sample which are 

more similar to this new company. This company is then classified according to 

with which group it has the greatest similarity. 
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Here are some examples where the SVM can help coping with non-linearity and non-

monotonicity. One case is, when the coefficients of some financial ratios in equation 

(1), estimated with a linear parametric model, show a sign that does not correspond 

to the expected one according to theoretical economic reasoning. The reason for that 

may be that these financial ratios have a non-monotone relation to the PD and to the 

score. The unexpected sign of the coefficients depends on the fact, that data 

dominate or cover the part of the range, where the relation to the PD has the 

opposite sign. One of these financial ratios is typically the growth rate of a company, 

as pointed out by [10]. Also leverage may show non-monotonicity, since if a company 

primary works with its own capital, it may not exploit all its external financing 

opportunities properly. Another example may be the size of a company: small 

companies are expected to be more financially instable; but if a company has grown 

too fast or if it has become too static because of its dimension, the big size may 

become a disadvantage. Because of these characteristics, the above mentioned 

financial ratios are often sorted out, when selecting the risk assessment model 

according to a linear classification technique. Alternatively an appropriate evaluation 

of this information in linear techniques requires a transformation of the input 

variables, in order to make them monotone and linearly separable.31  

 

A common disadvantage of non-parametric techniques such as SVMs is the lack 

of transparency of results. SVMs cannot represent the score of all companies as a 

simple parametric function of the financial ratios, since its dimension may be very 

high. It is neither a linear combination of single financial ratios nor has it another 

simple functional form. The weights of the financial ratios are not constant. Thus the 
marginal contribution of each financial ratio to the score is variable. Using a 

Gaussian kernel each company has its own weights according to the difference 

between the value of their own financial ratios and those of the support vectors of the 

training data sample. 

 

 

 

 

                                                 
31 See [6] for an analysis of the univariate relation between the PD and single financial ratios as well as for possible 
transformations of input financial ratios in order to reach linearity.  
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Interpretation of results is however possible and can rely on graphical visualization, 

as well as on a local linear approximation of the score. The SVM threshold can be 

represented within a bi-dimensional graph for each pair of financial ratios. This 

visualization technique cuts and projects the multidimensional feature space as well 

as the multivariate threshold function separating solvent and insolvent companies on 

a bi-dimensional one, by fixing the values of the other financial ratios equal to the 

values of the company, which has to be classified. By this way, different companies 

will have different threshold projections. However, an analysis of these graphs gives 

an important input about the direction towards which the financial ratios of non-

eligible companies should change, in order to reach eligibility.  

 

The PD can represent a third dimension of the graph, by means of isoquants and 

colour coding. The approach chosen for the estimation of the PD can be based on 

empirical estimates or on a theoretical model. Since the relation between score and 

PD is monotone, a local linearization of the PD can be calculated for single 

companies by estimating the tangent curve to the isoquant of the score. For single 

companies this can offer interesting information about the factors influencing their 

financial solidity. 

 
In the figure below the PD is estimated by means of a Gaussian kernel32 on data 

belonging to the trade sector and then smoothed and monotonized by means of a 

Pool Adjacent Violator algorithm.33 The pink curve represents the projection of the 

SVM threshold on a binary space with the two variables K21 (net income change) 

and K24 (net interest ratio), whereas all other variables are fixed at the level of 

company j. The blue curve represents the isoquant for the PD of company j, whose 

coordinates are marked by a triangle.  

                                                 
32 This methodology is based on a non-parametric estimation of the PD and has the advantage that it delivers an individual PD 
for each company based on a continuous, smooth and monotonic function. This PD-function is computed on an empirical basis, 
so there is no need for a theoretical assumption about the form of a link function. 
33 See [11].  
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Exhibit 2: Graphical Visualization of the SVM Threshold and of a Local Linearization of the 

Score Function: Example of a Projection on a Bi-dimensional Graph with PD Colour Coding 

 

The grey line corresponds to the linear approximation of the score or PD function 

projection for company j. One interesting result of this graphical analysis is that 

successful companies with a low PD often lie in a closed space. This implies that 

there exists an optimal combination area for the financial ratios being considered, 

outside of which the PD gets higher. If we consider the net income change, we notice 

that its influence on the PD is non-monotone. Both too low or too high growth rates 

imply a higher PD. This may indicate the existence of the optimal growth rate and 

suggest that above a certain rate a company may get into trouble; especially if the 

cost structure of the company is not optimal i.e. the net interest ratio is too high. If a 

company, however, lies in the optimal growth zone, it can also afford a higher net 

interest ratio. 
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IV.4. AN EMPIRICAL SVM MODEL FOR SOLVENCY ANALYSIS 
 

In the following chapter, an empirical SVM model for solvency analysis on German 

data will be presented.34 The estimation of score functions and their validation are 

based on balance sheets of solvent and insolvent companies. In doing so a 

company is classified as insolvent if it is the subject of failure judicial 
proceeding. The study is conducted over a long period, in order to construct durable 

scores that are resistant, as far as possible, to cyclical fluctuations. So the original 

data set consists of about 150.000 firm-year observations, spanning the time period 

from 1999 to 2005. The forecast horizon is three and a half years. That is, in each 

period a company is considered insolvent, if it is subject to legal proceedings within 

three and a half years since the observation date. Solvent companies are those that 

have not gone bankrupt within three and a half years after the observation date. With 

shorter term forecast horizons, such as one-year, data quality would be poor, since 

most companies do not file a balance sheet, if they are on the point of failure. 

Moreover, companies that go insolvent already show weakness three years before 

failure. In order to improve the accuracy of analysis, a different model was developed 

for each of the following three sectors: manufacturing, wholesale/retail trade and 

other companies. The three models for the different sectors were trained on data 

over the time period 1999-2001 and then validated out-of-time on data over the time 

period 2002-2005. 

 

Two important points for the selection of an accurate SVM model are the choice of 

the input variables, i.e. of the financial ratios, which are considered in the score, as 

well as of the tuning parameters C and r (once a Gaussian kernel has been chosen).  

 
sector year total 

 1999 2000 2001 2002 2003 2004 2005 solv. ins. 

manufacturing 6015 5436 4661 5202 5066 4513 698 30899 692 

wholesale / retail trade 12806 11230 9209 8867 8016 7103 996 57210 1017 

other 6596 6234 5252 5807 5646 5169 650 34643 711 
 

Table 1: Training and Validation Data Set Size – Without Missing Values 

 

                                                 
34 The database belongs to the balance sheet pool of the “Deutsche Bundesbank”. 
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The choice of the input variables has a decisive influence on the performance results 
and is not independent from the choice of the classification technique. These 
variables normally have to comply with the assumptions of the applied classification 
technique. Since the SVM needs no restrictions on the quality of input variables, it is 
free to choose them only according to the model accuracy performance. The input 
variables selection methodology applied in this paper is based on the following 
empirical tools.  
 

The discriminative power of the models is measured on the basis of their accuracy 

ratio (AR) and percentage of correctly classified observations, which is a compact 

performance indicator, complementary to their error quotes. Since there is no 

assumption on the density distribution of the financial ratios, a robust comparison of 

these performance indicators has to be constructed on the basis of bootstrapping.  

 

The different SVM models are estimated 100 times on 100 randomly selected training 

samples, which include all insolvent companies of the data pool and the same 

number of randomly selected solvent ones. Afterwards they are validated on 100 

similarly selected validation samples. The model, which delivers the best median 

results over all training and validation samples, is the one which is chosen for the 

final calibration. A similar methodology is used for choosing the optimal capacity C 
and the kernel-radius r of the SVM model. That combination of C and r values is 

chosen, which delivers the highest median AR on 100 randomly selected training and 

validation samples. 
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Ehibit 3: Choice of the Financial Ratios of an SVM Model for the Manufacturing Sector: An 

Example for the Choice of the Fifth Input Variable 

 
Our analysis first started by estimating the three SVM models on the basis of four 

financial ratios, which are presently being used by the “Bundesbank” for DA and 

which are expected to comply with its assumptions on linearity and monotonicity. By 

enhancing the model with further non-linearly separable variables a significant 

performance improvement in the SVM model was recorded. The new input variables 

were chosen out of a catalogue, which is summarized in Table 3, on the basis of a 

bootstrapping procedure by means of forward selection with an SVM model. 

Variables were added to the model sequentially until none of the remaining ones 

improved the median AR of the model. Exhibit 3 shows the AR distributions of 

different SVM models with 5 variables. According to these graphical results one 

should choose K24 as the fifth variable. As a result of this selection procedure, the 

median AR peaked with ten input variables (10FR) and then fell gradually. 
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Sector 

Manufacturing Wholesale/Retail Trade Other 

K01: pre-tax profit margin K01: pre-tax profit margin K02: operating profit margin 

K03: cash flow ratio K04: capital recovery ratio, K05: debt cover 

K06: days receivable K06: days receivable K06: days receivable 

K07: days payable 

K09: equity ratio adj. K09: equity ratio adj. K08: equity ratio 

K11: net income ratio 

K15: liquidity 1  

K17: liquidity 3 (current assets to short 

debt) 

K12:guarantee a.o. obligation ratio 

(leverage 1) 

K18: short term debt ratio K18: short term debt ratio K18: short term debt ratio 

K21: net income change K19: inventories ratio K24: net interest ratio 

K24: net interest ratio K21: net income change 

K26: tangible asset growth K31: days of inventories K31: days of inventories 

KWKTA: working capital to total assets KL: leverage KL: leverage 
 

Table 2: Final Choice of the Input Variables Forward Selection Procedure 

 

A univariate analysis of the relation between the single variables and the PD showed 

that most of these variables actually have a non-monotone relation to the PD, so that 

considering them in a linear score would require the aforementioned transformation. 

Especially growth variables as well as leverage and net interest ratio showed a 

typical non-monotone behaviour and were at the same time very helpful in enhancing 

the predictive power of the SVM. 

 

Exhibit 4 summarizes the predictive results of the three final models, according to the 

above mentioned bootstrap procedure. Based on the procedure outlined above, the 

following values of the kernel tuning parameters were selected: r = 4 for the 

manufacturing and trade sector and r = 2.5 for other companies. This suggests that 

this sector is less homogeneous than the other two. The capacity of the SVM model 

was chosen as C = 10 for all the three sectors. It is interesting to notice, that the 

robustness of the results, measured by the spread of the ARs over different samples, 

became lower, when the number of financial ratios being considered grew. So there 

is a trade-off between the accuracy of the model and its robustness.  

 
 
 
 
 
 
 



  65 

Variable Name Aspect Q 0.01 median Q 0.99 IQR Relation to the PD 

K01 Pre-tax profit (income) margin profitability -57.1 2.3 140.1 6.5 - n.m. 

K02 Operating profit margin profitability -53 3.6 80.3 7.2 - 

K03 Cash flow ratio (net income ratio) liquidity -38.1 5.1 173.8 10 - 

K04 Capital recovery ratio liquidity -29.4 9.6 85.1 15 - 

K05 Debt cover  

(debt repayment capability) 

liquidity -42 16 584 33 - 

K06 Days receivable (accounts receivable 

collection period) 

activity 0 29 222 34 + n.m. 

K07 Days payable (accounts payable collection 

period) 

activity 0 20 274 30 + n.m. 

K08 Equity (capital) ratio financing -57 16.4 95.4 27.7 - 

K09 Equity ratio adj. (own funds ratio) financing -55.8 20.7 96.3 31.1 - 

K11 Net income ratio profitability -57.1 2.3 133.3 6.4 +/- n.m. 

K12 guarantee a.o. obligation ratio (leverage 1) leverage 0 0 279.2 11 -/+ n.m. 

K13 Debt ratio liquidity -57.5 2.4 89.6 18.8 -/+ n.m. 

K14 Liquidity ratio liquidity 0 1.9 55.6 7.2 - 

K15 Liquidity 1 liquidity 0 3.9 316.7 16.7 - 

K16 Liquidity 2 liquidity 1 63.2 1200 65.8 - n.m. 

K17 Liquidity 3 liquidity 2.3 116.1 1400 74.9 - n.m. 

K18 Short term debt ratio financing 0.2 44.3 98.4 40.4 + 

K19 Inventories ratio investment 0 23.8 82.6 35.6 + 

K20 Fixed assets ownership ratio leverage -232.1 46.6 518.4 73.2 -/+ n.m. 

K21 Net income change growth -60 1 133 17 -/+/- n.m. 

K22 Own funds yield profitability -413.3 22.4 1578.6 55.2 +/- n.m. 

K23 Capital yield profitability -24.7 7.1 61.8 10.2 - 

K24 Net interest ratio cost. structure -11 1 50 1.9 + n.m. 

K25 Own funds/pension provision r. financing -56.6 20.3 96.1 32.4 - 

K26 Tangible assets growth growth -0.2 13.9 100 23 -/+ n.m. 

K27 Own funds/provisions ratio financing -53.6 27.3 98.8 36.9 - 

K28 Tangible asset retirement growth 0.1 19.3 98.7 18.7 -/+ n.m. 

K29 Interest coverage ratio cost structure -2364 149.5 39274.3 551.3 n.m. 

K30 Cash flow ratio liquidity -27.9 5.2 168 9.7 - 

K31 Days of inventories activity 0 41 376 59 + 

K32 Current liabilities ratio financing 0.2 59 96.9 47.1 + 

KL Leverage leverage 1.4 67.2 100 39.3 + n.m. 

KWKTA Working capital to total assets liquidity 565.9 255430 51845562.1 865913 +/- n.m. 

KROA Return on assets profitability -42.1 0 51.7 4.8 n.m. 

KCFTA Cash flow to total assets liquidity -26.4 9 67.6 13.6 - 

KGBVCC Accounting practice, cut  -2 0 1.6 0 n.m. 

KCBVCC Accounting practice  -2.4 0 1.6 0 n.m. 

KDEXP Result of fuzzy expert system, cut  -2 0.8 2 2.8 - 

KDELTA Result of fuzzy expert system   -7.9 0.8 8.8 3.5 - 

 
n.m.= non-monotone 
+ = positive relation      - = negative relation 

+ n.m.= non monotone relation, mostly positive - n.m.= non monotone relation, mostly negative 

+/- n.m. = non-monotone relation, first positive then negative -/+ n.m. = non-monotone relation, first negative 

then positive 

-/+/- n.m. = non-monotone relation, first negative, then positive then again negative 
 

Table 3. The Catalogue of Financial Ratios – Univariate Summary Statistics and Relation to 

the PD35 

                                                 
35 K1-K32 as well as KGBVCC and KDEXP are financial ratios belonging to the catalogue of the “Deutsche Bundesbank”. See 
[4]. 
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Exhibit 4: Predictive Results: ARs of the Final SVM Model after Bootstrapping 

 

IV.5. SUMMARY AND CONCLUSION 
 

SVMs can produce accurate and robust classification results on a sound theoretical 

basis, even when input data are non-monotone and non-linearly separable. So they 

can help to evaluate more relevant information in a convenient way. Since they 

linearize data on an implicit basis by means of kernel transformation, the accuracy of 

results does not rely on the quality of human expertise judgement for the optimal 

choice of the linearization function of non-linear input data. SVMs operate locally, so 

they are able to reflect in their score the features of single companies, comparing 

their input variables with the ones of companies in the training sample showing 

similar constellations of financial ratios. Although SVMs do not deliver a parametric 

score function, its local linear approximation can offer an important support for 

recognising the mechanisms linking different financial ratios with the final score of a 

company. For these reasons SVMs are regarded as a useful tool for effectively 

complementing the information gained from classical linear classification techniques. 
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VV..  PPRROOJJEECCTT  FFIINNAANNCCEE  ––  AA  MMOONNTTEE  CCAARRLLOO  AAPPPPRROOAACCHH  TTOO  

EESSTTIIMMAATTEE  PPRROOBBAABBIILLIITTYY  OOFF  DDEEFFAAUULLTT,,  LLOOSSSS  GGIIVVEENN  

DDEEFFAAUULLTT  AANNDD  EEXXPPEECCTTEEDD  LLOOSSSS  
 

G. TESSIORE / V. FAVALE 

CENTRALE DEI BILANCI 

 

V.1. SYNOPSIS 
 

Under Basel II, Project finance (PF) is one of five sub-classes of specialized lending 

(SL) within the corporate asset class. Basel II proposes a pure qualitative-judgmental 

method - the “Supervisory Slotting Criteria Approach” - to evaluate Probability of 

Default (PD), Loss Given Default (LGD) and Expected Loss (EL) of a PF operation 

while allowing banks to develop their own Internal Rating System methodology. 

 

In this paper, we suggest a quantitative method based on Monte Carlo (MC) 

simulations of future cash flows (of the project involved within a Project Finance 

operation) that allows for an analytical estimation of the PD, the LGD and the EL.  

 

We suggest adopting two different MC simulations: a main simulation of future cash 

flows to estimate the PD of the project and several conditioned-to-default MC 

simulations of recovery rates to estimate the LGD. 

 

We use the tool developed by the Centrale dei Bilanci for the evaluation of PF risk to 

show how to collect data from different projects in a standardized way, how to model 

micro and macroeconomic scenarios with “hierarchical” dependences and different 

stochastic distributions and, finally, how to manage specific risk events in compliance 

with Basel II requirements.  
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V.2. INTRODUCTION – WHAT IS PROJECT FINANCE ? 

 

Project Financing (PF) is a method of funding in which the lender looks primarily to 

the revenues generated by a single project, both as a source of repayment and as 

collateral for the exposure. This type of financing is usually for large, complex and 

expensive installations. In such transactions, the lender is usually paid solely or 

almost exclusively out of the money generated by the contracts for the facility’s 

output, such as the electricity sold by a power plant. The borrower is usually an SPV 

(Special Purpose Vehicle) that is not permitted to perform any function other than 

developing, owning, and operating the installation. The consequence is that 

repayment depends primarily on the project’s cash flow and on the collateral value of 

the project’s assets.  

 

There are many actors that are involved in a PF operation. We can summarize the 

relationship between all the actors and the SPV with the following scheme (Exhibit 1). 

 

 
 

Exhibit 1: Relationship between all the actors and the SPV 

Supplier of 
goods/service 

Special Purpose
Vehicle 

Public administration Banks 
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(Shareholders) 
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Goods/service 

$ 
License/ 

authorization 
/ subsidy…

fee Financing 
Interest, 
refund 

Equity, 
Subordinated 
loan 

Dividend, 
refund 

$

Insurance 
contracts Goods 

service 
$Performance 

$ 

construct 

$ 
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Banks and the sponsor finance the SPV to get the project started. During the life of 

the project the positive cash flows generated by the project allow the SPV to refund 

loans from banks and the sponsor. If the cash flows are insufficient to refund the 

bank loans (also using ad-hoc reserves created during the life of the project), the 

project is in default. From this moment, a recovery procedure starts which normally 

is based on a disposal of the assets on the market or on a disposal of the ongoing 

project36.  

 

The following paper presents the point-of-view of the banks and illustrates a specific 

method developed by Centrale dei Bilanci aiming at: 

• collecting and standardizing the information of each PF operation using a 

common template available for all different kinds of projects; 

• estimating the Probability of Default (PD) of a project in compliance with Basel II 

requirements and, finally, 

• estimating the Loss Given Default (LGD) and the Expected Loss (EL) . 

 

 

V.3. CENTRALE DEI BILANCI APPROACH TO EVALUATE PF OPERATIONS 
 

Special Purpose Vehicles (SPVs) typically are incorporated “ad hoc” in order to 

manage a specific project. Therefore historical data are not available and it is very 

difficult to assess the credit quality of these companies. The SPV’s historical features 

are not relevant anyhow because the refund depends on the future cash flows of the 

project. 

 

Given that in PF operations default events are very rare, it is consequently not 

possible to create an extensive database to estimate a good statistical model. 

Moreover, projects operate under different scenarios with specific and often complex 

contractual structures that make it hard to evaluate a new project using the 

experience of (few) similar projects. This means that comparing different projects, 

even of the same “family”, could not be sufficient for a correct evaluation of the risk 

involved.
                                                 
36 If the project is large and difficult to sell on the market, normally banks restructure the debt in a new financing operation. In 
this case, however, it is important to evaluate the residual debt and the future value of the project. 
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The “term sheets” of PF operations provide for long-term planning; therefore, it is 

important to consider the whole life of the project to evaluate correctly the dynamics 

of future repayments. It would be unrealistic to establish an “average evaluation” 

suitable for the whole life of the project. 

 

LGD depends on many factors: the (complex) collateral structure, the seniority of the 

debt, the residual value of the assets (or the future cash flows); as a consequence, it 

is very difficult to summarize these measures in a qualitative or – even more difficult - 

in a statistical model. 

 
The complexity of the project makes a merely qualitative analysis inadequate. For 

these reasons, it is preferable, for the assessment of credit risk of a PF operation, to 

use a method that: 

• bypasses the problem of a lack of historical data, 

• is forward looking, 

• is not a simple qualitative analysis, but that is also able to capture the 

complexity of the specific project, 

• estimates a long term PD and its term structure, 

• weighs both the microeconomic and macroeconomic environment of the 

project and, finally, 

• estimates LGD in a quantitative and robust way. 

 

Monte Carlo simulations of economical-financial scenarios are a suitable 

methodology to estimate the PD, the LGD and the EL for PF operations. 
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V.3.1. Introduction to the Monte Carlo approach 
 

The main idea of Monte Carlo simulations is to generate large numbers of realistic 

future economical-financial scenarios based on a probabilistic model of the 

composite environment in which the project operates. Theoretically, the macro-

economic scenario influences the micro-economic scenario of the specific project. 

The tool simulates both the macro- and the micro-economic scenarios. Given the 

simulated scenario, the tool computes the cash flows and the financial statements of 

the project over its life. 

Aggregating the results of all the simulated scenarios, the tool estimates PD, LGD 

and EL of the project both from a short and a long-term perspective. 

 

The model considers the figures of the project as random variables which depend on 

a series of risk drivers or on other characterstics of the project. The (hierarchical) 

dependence structure within the variables of the project and the stochastic 

distribution associated to each variable define the probabilistic model object of the 

MC simulation. 

 

In our approach, we suggest to start analyzing the business plan of the project, i.e. 

the most likely scenario we should expect: the analyst enters the data of the business 

plan into the forms of the tool, namely data on investment, revenues, costs, financing 

structure, stocks, taxation etc. This step is essential because it allows different 

projects to be treated in a standardized way. An algorithm re-computes the balance 

sheets of the business plan in an automatic way to check if the data entry was 

correct. 

 

Then, the process follows by defining the probabilistic model of the project. The 

analyst, for each item of the business plan, finds the risk drivers that can affect its 

value. The analyst defines the relationship between the items of the business plan 

and their risk drivers. These relationships can be defined by a mathematical formula 

or by a correlation coefficient. The relationships are always causal: this means that 

each variable is generated depending on the values assumed by the linked variables 

at a lower level. If the relationship is defined by a correlation coefficient, the 

probabilistic distribution of the variable is needed. 
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Most of MC methods are based on a copula method that generates all the variables 

at the same time, given a complete correlation matrix. In a PF operation, the list of 

variables and risk drivers can be very long so that it would be practically impossible 

to define such a huge correlation matrix. 

In our approach, we use a “hierarchical” structure between variables thereby 

bypassing this problem and allowing the analyst to specify only the known 

relationships. All the other relationships are implicit in the hierarchical structure. 

  

The formal validity of the hierarchical dependence structure is automatically checked 

by the tool. 

 

V.3.2. Project phases and default definition 
 

We distinguish two different typical phases during the life of a project: 

• Construction period 

• Operating period 

 

During the construction period (that can last several years) the capital expenditure 

generates outflows – negative cash flows - financed by banks and shareholders by 

the PF operation. During the construction period the default event happens when the 

investment exceeds the maximum amount of loan financing available. 

 

During the operating period the project generates positive cash flows that allow to 

refund the debt. The default event happens when the DEBT SERVICE (interest + 
repayments) of the year T is greater than: 
 

    Operating Cash Flow generated during year T 
 + DSRA (Debt Service Reserve Account)37 at the beginning of year T 
 + Liquidity at the beginning of year T (plus credit revolving facility need during 
    year T) 

 + MRA (Maintenance Reserve Account)38 at the beginning of year T 

                                                 
37 DSRA is a cash reserve set aside to repay future debt, in the event that cash generated by operations is temporary 
insufficient. 
38 MRA is a reserve account that builds up cash balances sufficient to cover a project’s maintenance expenses. 
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The default condition is tested for each year of the simulated scenarios. 

 

The first image in Exhibit 2 shows a default event occurring during the 3rd year of the 

operating period. The second image represents 1000 simulated scenarios of cash 

flows of the project, with a construction period of 4 years and an operating period of 

15 years. 

 

 
 

Exhibit 2: Simulated scenarios 

 

The MC simulation generates n-thousand future possible scenarios. When the default 

happens, a second MC simulation starts allowing the estimation of the LGD. 
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V.4. IMPLEMENTATION OF THE METHOD IN CENTRALE DEI BILANCI’S TOOL 
 

V.4.1. The process 
 

The procedure of PD-LGD estimation could be summarized by the following steps: 

 

• Integration of the main assumptions in the BASE CASE. 

 

• Identification of the RISK DRIVERS 

 

• Definition of stochastic structure 

o Relationship between variables and risk drivers 

o Probabilistic distributions 

 

• Monte Carlo simulation of the economical-financial scenarios  

o Financial statement computation 

o Cash flow/Debt service simulation 

o Testing of default event  

o Computation of PD,  LGD and EL  

 

• Reporting 

 

 

 

 

 

 

 

 

 

 

Data entry 

Monte Carlo 

Simulation 
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V.4.2. Data entry 
 

PF covers a wide range of projects, especially in the sector of public utilities 

(transportation, energy, oil & gas, water distribution) and construction (general 

contractors, motorways, public services). 

 

Because of the different characteristics of the projects the data entry has been 

structured in the following 10 sections with complete flexibility within each of them: 

• Sections 1-7 collect both data on the base case that will be used for key 

financial results and information on the stochastic structure of the project being 

used in the MC simulation. 

o Section 1 – General characteristics of the project 

o Section 2 – Investment and construction data 

o Section 3 – Operating revenues 

o Section 4 – Operating costs 

o Section 5 – Working capital 

o Section 6 – Taxation 

o Section 7 – Funding structure 

 Bank loans: 

• Term loan (main terms of the loan) 

• Stand-by loan (available during construction period) 

• Revolving credit (debt that support term loan) 

• VAT financing 

• Other loans 

 Shareholders’ funding 

• Subordinated loans 

• Equity 

• Section 8 encompasses a list of risks that might affect the project. The 

structure of the risks is compliant with the requirements of the Basel II Slotting 

Criteria Approach, and includes a list of specific risk events to be considered in 

the PD estimation. These risks affect the base case values filled in section 2 to 

7. 

• Section 9 and 10 collect information on recovery values and collaterals. These 

sections are used in LGD estimation and only for default scenarios. 
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o Section 9 – Recovery values (specifies the rules for computing the 

recovery values of an asset in an automatic way) 

o Section 10 - Collaterals 

 

• The values filled in sections 2 to 7 refer to the following items: 

• The base case assumptions (mandatory) 

• The relationship between the value and other variable(s) (optional) 

• The stochastic distribution of the value in each year (optional) 

 

In each section, there is a sub-section where it is possible to specify values / 

relationship / formula / stochastic distributions of all the risk drivers linked to the main 

items of the financial statements. 

 

In Exhibit 3 and Exhibit 4 we show an abstract from the data entry procedure: Exhibit 

3 presents a list of seven different kinds of revenue (all customized by the analyst). 

Exhibit 4 presents a list of several risk drivers used to generate the values in Exhibit 

3. 

 
 

 
Exhibit 3: Revenues 
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Exhibit 4: Risk drivers 
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The formulas to generate revenues are shown in Exhibit 4. In a specific dialog box 

(not shown here) it is possible to define the correlation between variables. The 

analyst enters only the known and direct correlation between the risk drivers and the 

items of the project. 

 

This structure of the windows is common to sections 2 to 7 of data entry. 

 

In section 8, information of specific risk events are collected. The risk events could be 

the same as suggested in the Basel II Slotting Criteria Approach or any other risk 

events that could affect the evaluation of the project. For each risk event the analyst 

have to specify the probability of the event and the effect of this event on the financial 

statemet. The risk’s impact on simulated cash flow and, consequently, on the 

estimated PD of the project could be really significant. 

 

In section 9, data on the method of estimation of LGD are collected. The recovery 

rates, interest rates and the durations of the recovery processes are also gathered in 

this section. 

 

In section 10, we explore the collateral structure and the seniority of the debt (and the 

hierarchy of the collateral). 

 

Section 9 and 10 are used in a default-depending Monte Carlo simulation for the 

LGD estimation. 
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V.4.3. The base engine 
 

An automatic report is generated for each year of the base case (in PDF format) 

containing the following information: 

• financial statement 

• income statement 

• cash flow statement 

• economical ratios 

o profitability 

o financial structure 

o solvency 

•  some measure of risk, typical of PF operations 

o DSCR = Debt Service Cover Ratio (yearly) 

o LLCR = Loan Life Cover Ratio 

o PLCR = Project Life Cover Ratio 

o IRR = Internal Rate of Return 

 

These measures are computed for the entire simulated scenario. 
 

The algorithm that computes these measures is called “base engine” and can be 

summarized in the following flow chart (Exhibit 5).  
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Exhibit 5: Base engine 

 

During the construction period, the “investment scenario” establishes the amount of 

needed funding (by bank and shareholders). 

During the operating periods, financial statements, operating cash flow and debt 

service are computed using inter alia revenues, expenses, changes in working 

capital, accounting reserves, taxes, issuing of revolving finance, repayment of 

financing and dividends. 

 

Operating cash flow and debt service of the year are used to test the default 

definition. 

 

The aggregated Debt Service actually paid on all the simulated scenarios is used in 

the PD and LGD estimation. 
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V.4.4. The Monte Carlo engine 
 

The items of the financial statement are simulated depending on a list of risk drivers 

or other characteristics of the project. 

 

The risk drivers are the key variables of the MC simulation. They could be: 

• microeconomic (like quantity sold, price per piece, unit labor cost, …): 

microeconomic risk drivers  describe the detailed characteristics of the project; 

• macroeconomic (like internal or external inflation, GDP growth, oil price, 

exchange rate, …): macroeconomic risk drivers describe the macroeconomic 

scenario (and its evolution) which influences the microeconomic risk drivers or 

directly the individual items of the financial statement; 

 

We think it is important to share the same risk drivers (and the same stochastic 

structure/relationship/statistical hypothesis) between different projects operating in a 

similar macroeconomic environment/scenario in order to achieve a consistent 

evaluation. 

 

V.4.4.1. Relationship between variables 
 

We define two kinds of relationships between the variables (risk drivers/items of the 

financial statements) of the project: 

 

• Formula: a mathematical formula links the values of an item with some 

specifics risk drivers. It is possible to define a conditional structure for the 

formulas (for example to allow a discount policy depending on the quantity 

sold) and to use different formulas for each year. 

• Correlation: a (linear) correlation coefficient summarizes the relationship 

between a risk driver with other risk drivers or items of the financial statement. 

This coefficient can be referred to as a relationship time T on T, time T on T-n 

and also time T on T-n of the same variable (autocorrelation), or any 

combination of this type of relationship. 
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Both relationships are always hierarchical: one variable in time T depends on one or 

more other variables observed in time T or T-n. For this reason, the correlation 

coefficient has to be considered as a target correlation that, given the observed 

values of the risk drivers already generated, influences the new values of the 

generating item of the project. As a first step, the values of the risk driver (depending 

on its stochastic distribution/relationship) are generated. Then the values of the item 

depending on the observed values of the linked risk driver are calculated. 

 

Only known and direct dependences between variables are specified in the model. 

The other dependences are implicit in the defined hierarchical-stochastic structure. In 

this way we minimize the amount of information needed to generate the MC 

simulation bypassing the problem of specifying a complete correlation matrix 

between all the variables involved in the project. 

 

Not all the variables have to be put in relationship with the other variables. Some 

variables can be considered independent from the other variables or even constant.  

 

V.4.4.2. Probability distribution 
 

All the risk drivers and characteristics of the project could be associated (if 

necessary) to a specific stochastic distribution. This distribution could be different for 

each year and for each variable. 

 

If the variable is constant (i.e. if it does not change the value during the MC 

simulation), obviously the stochastic distribution is not required. 

 

If the variable is independent (i.e. if it changes its value during the MC simulation 

independently from the other variables), the probability distribution is mandatory. 

 

If the variable depends on other variables, one has to distinguish: 

• if the relationship is defined by a formula; then it is not necessary to specify a 

stochastic distribution because the value is fully defined by the formula; 

• if the relationship is specified by a correlation coefficient; then the distribution 

is mandatory. 
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The distributions we consider useful for MC simulation are the following (Exhibit 5 

and 6). 

 

  
Uniform 

Parameters: Min and Max 

Triangular 
Parameters: Min, Mode, Max 

  
  

Trapezoidal 
Parameters: Min, Mode 1, Model 2, Max 

Normal 
Parameters: Mean and Variance, Min 

and Max 

  
   

Beta with long left tail Beta with long right tail Beta “U” shaped 
Parameters: Mean and Variance, Min and Max  

(an automatic check on mean and variance verifies consistency with target shape ) 

   
 

Exhibit 5: Continuous distributions 

Distribuzione BETA a forma di "U" (a=0.5,b=0,5)
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Distribuzione TRIANGOLARE (min=5, moda=17,max=20)
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“on-off” 

Parameter: probability of success 

Discrete value-probability 

Parameters: couples value-probability 

 
 

  

Discrete uniform interval- probability 
Parameters: range of uniform interval and correspondent probability 

 
 

Exhibit 6: Discrete distributions 

 

We use the following method to generate random values.  
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Exhibit 7: Probability distribution function vs. Cumulative Distribution function 

 

This method allows generating independent random values given the marginal 

distribution desired. 

 

In general, we follow this method to generate random values depending on the 
desired correlation structure. 
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with y being a random variable generated depending on the observed values on x, 

given the target correlation and the marginal distributions of x and y. 
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V.4.4.3. Example 
 

Suppose we would like to generate three variables with the following marginal 

distributions (constant each year): 

V1 ~ Triangular (100,150,200) 

V2 ~ Triangular (5, 20, 60) 

V3 ~ Normal (50, 100, 0,100) 

 

The hierarchical-relationship is: 

#1)    V1 (T) is auto correlated with V1(T-1) at  0.80  

 

#2a)  V2(T) is auto correlated with V2(T-1) at  0.40 

#2b)  V2(T) depends on V1(T)  with a correlation of -0.40 

 

#3a)  V3(T) depends on V1(T) with a correlation of 0.50 

#3b)  V3(T) depends on V2(T) with a correlation of 0.40 

 

Analysing the relationships39, it turns out that V1 is the low-level variable because it 

depends only on itself at time T-1. V2 is the second-level variable because it depends 

on itself at time T-1 and on V1 at time T. V3 is the third-level variable because it 

depends on V1 and V2 at time T. 

For this reason, the procedure first generates V1(T) depending on V1(T-1), then 

generates V2(T) depending on V2(T-1) and V1(T) and, finally, generates V3(T) 

depending on V1(T) and V2(T).  

 

In this example we generate one thousand simulated values of V1, V2 and V3 using 

the MC engine40 and check if the desired relationships and marginal distributions are 

satisfied. 

 

The graphs below summarize the relationships and the marginal distribution 

observed after the MC simulation. 

                                                 
39 In a real project, the relationships could be very complicated due the large number of variables involved. For this reason, a 
specific algorithm to check automatically the rank of the variables was developed. Thus there is no need for the analyst to enter 
the rank of the variables himself. 
40 If the three variables were risk drivers of a project that lasts for 10 years, the MC engine would simulate n-thousand series of 
10 years of V1, V2 and V3. In this example, we generate directly one series of one thousand values. 
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Exhibit 8 shows the marginal distributions (histograms from top left to bottom right) 

and the cross correlations (scatter plots in the right upper triangular) between the 

three variables V1, V2 and V3 on the thousand simulated values. Note that observed 

marginal distributions have the shape of the desired marginal distributions and the 

distributions of the points in the scatter plots are in line with the desired cross 

correlations. 

 

More in the details, the observed cross-correlation matrix is: 

 

 V1 V2 V3 
V1 1.0000 -0.5869 0.4909 

V2 -0.5869 1.0000 0.3944 

V3 0.4909 0.3944 1.0000 

 

that it’s very close to the target correlation that was: 

 

 V1 V2 V3 
V1 1.00 -0.60 0.50 

V2 -0.60 1.00 0.40 

V3 0.50 0.40 1.00 

 

Also the autocorrelations of V1 (correlation between V1(T) and V1(T-1)) and V2 

(correlation between V2(T) and V2(T-1)) are very close to the target correlation. 

In fact the observed autocorrelation on V1 is 0.8078 (the target being 0.80) and the 

observed autocorrelation on V2 is 0.3823 (the target being 0.40). 
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Exhibit 8: The marginal distributions 

 

The graphs below (Exhibit 9) show the different behaviour of V1 and V2 over time.  

 

V1 – First 100 simulated observations 
Autocorrelation: 0.8 

V2 – First 100 simulated observations 
Autocorrelation: -0.60 

 
Time 

 
Time 

 

Exhibit 9: Different behaviour of V1 and V2 

V1 V2
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This simple example shows how it is possible to generate three variables with 

different marginal distributions and at the same time with the desired correlation time 

T on T (cross correlation) and the desired correlation time T on T-1 (autocorrelation). 

With the algorithm developed in the tool it is possible to manage all the combinations 

of cross/serial/auto correlations. 

 

V.4.5. Probability of Default 
 

In PF operations, the definition of Probability of Default (PD) is not unique, but 

depends on the time horizon we consider. 

 

One can distinguish between: 

• a short term PD: it is the probability that the project will default the next year.  

• a long term PD: it can be considered as an average annualized long term PD. 

It includes the risk evaluation of the whole residual life of the project. We refer 

to this type of PD as the proper PD of the project 

 

With an iterative method it is possible to compute at time T0 the list of short term PDs 

and long term PDs for all following years. These PDs are conditional upon the project 

being still alive at the beginning of the year, given the information known in time T0. 

 

We define two different methods to estimate these PDs depending on which kind of 

information we decide to use and on the purpose of the PD. 

 

V.4.5.1. First method – the frequency approach 
 
This method uses only the “binary” information of the number of defaulted/non 

defaulted scenarios. 

The short term PD of the year T is computed as the number of defaulted scenarios 

during the year T on the number of survived scenarios at the beginning of the year. 

The long term PD is the yearly mean of the short term PDs, considering the life of the 

financing (that can be shorter than the life of the project). 

In a similar way we compute the list of short and long term PDs for the residual life of 

the project. 
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V.4.5.2.  Second method – the financial approach 
 

This method considers the lender bank’s point of view and uses the amounts of 

simulated future cash flows and debt repayments. The PDs computed with this 

method are annualized long term PDs. 

The PD is computed as a function of the deviation of the internal rate of return (from 

the bank’s point of view) of all simulated scenarios from the internal rate of return of 

non-defaulted scenarios. This annualized long term PD can be computed for each 

year over the whole life of the project. The list of future PDs can be considered the 

term structure of the PDs of the project. 

This PD is consistent with the pricing policy of the bank. 

 

V.4.6.   Loss Given Default and Expected Loss 
 

The Exposure at Default (EAD) and therefore the LGD depend primary on when the 

project defaults - at the beginning of the operating period the exposure is higher than 

towards the end of the operating period -  and on the recovery rate. 

 

We define two alternative recovery processes in case of default: 

• disposal of the assets of the project: the recovery is predominantly realized 

through selling the assets on the market (given the values of the assets at the 

moment of default) 

• disposal of the ongoing project: the market price is approximated by the 

present value of future cash flows 

 

In both cases, the actual recovery values depend also on: 

• the duration of the recovery process (that can be different among the assets) 

• the discount rates during the recovery process (that can change during the 

recovery process) 

• the structure and amount of collaterals (real or personal collateral’s values 

may depend on specific drivers) 

• the amount and seniority of the debt 
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to be taken into account in a specific MC simulation. 

 

For these reasons, we cannot estimate the LGD with the main MC simulation of 

future cash flows, but we need a default-dependent MC simulation for each defaulted 

scenario. The goal is to estimate the average recovery value simulating all the 

variables involved in the recovery process. 

 

The percentage of LGD is computed using a similar financial approach as the one 

used for the PD estimation: in this case, the internal rate of return from the bank’s 

point of view is computed considering the effective recovery values on defaulted 

scenarios. 

 

The Expected Loss (as a percentage) is the LGD times the PD of the project. 

 

 

V.5. SUMMARY AND CONCLUSION 
 

The Monte Carlo simulation discussed in this paper can be considered an 

appropriate way to evaluate the risk of project finance operations both for economic 

capital management purposes and for fulfilling regulatory requirements (Basel II). 

 

The heterogeneity of different projects and the complexity of the term structure of the 

projects can be managed with a standardized and flexible data entry procedure 

where all data are classified in sections depending on their role in the business plan. 

In order to model the complex macro- and micro-economic environment, in which the 

project operates, and to take into account different scenarios, it is important to 

manage correlations/relationships time T on T, time T on T-n and autocorrelations 

time T on T-n simultaneously. Many different stochastic distributions are used to 

model a large number of different situations. When these relationships/stochastic 

distributions are not sufficient to manage all relevant risk events, a specific section 

providing for the risk events defined by Basel II is used. 
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If the probabilistic model defined by the analyst is based on realistic assumptions, the 

method potentially provides a robust PD estimation that can be used both for pricing 

the PF operations and for Basel II requirements.  

 

The LGD, computed with a financial approach, requires a specific Monte Carlo 

simulation depending on the default event. 

 

In order to have a fine estimation of the PD during the life of the project, it is 

important to review the assumptions used in the simulation each year. After the first 

year, for example, the analyst can enter the observed values for this year into the 

tool. The entered values thereby become “deterministic” or “fixed”,Upon this basis, 

the analyst can review the assumptions used for the next years. The MC simulation 

will treat the first year as constant and the following years as stochastic. In this way, 

the PD estimation will become more precise year by year. 
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VVII..  WWHHAATT  IISS  AATT  SSTTAAKKEE  WWHHEENN  EESSTTIIMMAATTIINNGG  TTHHEE  

PPRROOBBAABBIILLIITTYY  OOFF  DDEEFFAAUULLTT  UUSSIINNGG  AA  SSCCOORRIINNGG  

FFUUNNCCTTIIOONN  ??  
M. BARDOS / BANQUE DE FRANCE  

 

VI.1. INTRODUCTION 
 

“Statistical inference techniques, if not applied to the real world, will lose their 

importance and appear to be deductive exercises. Furthermore, it is my belief that 

in a statistical course emphasis should be given to both mathematical theory of 

statistics and to application of the theory to practical problems. A detailed 

discussion on the application of a statistical technique facilitates better 

understanding of the theory behind the technique.” C. Radhakrishna RAO in 

Linear Statistical Inference and Its Applications. 

 

Most of the statistical studies on credit scoring focus on score construction. It is more 

unusual that they link the statistical techniques with a detailed analysis of the users’ 

requirements regarding the properties of these tools. Concerning companies’ failure 

the users are financial analysis experts or bankers in credit risk departments or 

banking supervisors. 

 

The increasing need for better control of credit risk by banks has led to a stepping-up 

of research concerning credit scoring. In the context of the Basle II agreement, the 

International Banking Committee has stressed the importance of forecasting the 

expected loss (EL) and, using extreme quantiles, the unexpected loss (UL) for a 

population of companies, in particular for customers of each commercial bank. In 

order to do so, it is necessary to estimate the default probability of each company at 

a given time horizon (PD). 
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The objective of an accurate forecasting gives rise to several needed properties and 

questions. We stress what is at stake in the construction and the use of credit scores. 

 

The responsibilities of Banque de France in the field of financial stability and the 

extensive coverage of its data files on companies have paved the way for developing 

a scoring system able to fullfil most of these needed properties.  
 

This paper presents some credit scoring construction principles, which increase the 

quality of the tool and the accuracy of default probability. It does not cover the 

complete debate on model choice, but discusses some arguments regarding this 

choice and concentrates on the comparison between Fisher linear discriminant 

analysis (LDA) and logistic regression (LOGIT). 

 

 

VI.2. THE REQUIRED PROPERTIES OF A CREDIT SCORING SYSTEM 
 

Companies risk assessment quality relies on the accuracy of estimates of default 

probability. If individual diversified probabilities of failure cannot be built in most of the 

cases41, however, in the case of large samples, it is possible to determine 

homogeneous classes of risk. Their homogeneity is one of the most important 

properties to aim at. If this requirement is met, their role is comparable to rating 

grades.  

Such objectives give rise to several other questions regarding the properties of the 

built up score. These relate to: 

• the stability over time of risk classes 

• the independence of the risk measurement vis-à-vis the business cycle 

• the stability of transition matrices 

• the estimated correlation of risks 

 

 

 

                                                 
41 Beside the fact that estimated probabilities on small samples are not relevant, many models lead straight to risk classes (Cf. 
CART method , Breiman and alii (1984)). 
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In order to tackle these issues, the quality of the construction process of the score is 

determinant. There are several sensitive stages of the process. One of the most 

important concerns the determination of the learning sample and test samples (the 

historical period in observation, the forecasting horizon and selection of variables). 

((Cf. M. Bardos (2007, 1998), M. Bardos, S.  Foulcher, E. Bataille (2004)).  

 

The validation process and the determination of stable risk classes will also have 

implications on the frequency with which the tool should be updated, and the 

interaction between the business cycle, forecasting and revision. 

 

These issues have increasingly been the subject of research and it appears that they 

are highly interdependent. Their impacts on the robustness and the effectiveness of 

the tool have set out the choices made at the Banque de France.  

 

The aim of this article is to stress the importance of accurate estimation of default 

probabilities. The means for doing so are developed in the context of two mainly used 

discriminant techniques, Fisher linear discriminant analysis (LDA) and logistic 

regression (LOGIT). Appropriateness of the model to companies’ accounting data, 

quality and interpretation capacity of the operating tools will be looked at. We will see 

that if LOGIT needs parametric assumptions, LDA can be presented in two ways 

according to the chosen decision rule: first as a distribution free model, second as a 

parametric model. 
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VI.3. THE MODELS 
 
Supervised classification, also called dicriminant analysis, covers a large domain of 

techniques beyond the wellknown Fisher discriminant analysis. Detailed theoretical 

comparisons have been made in several studies: Hand (2006), Hristache, Delcroix, 

Patiléa (2004), Baesens and alii (2003), Bardos (2001b), Bardos, Zhu (1998), Thiria 

and alii (1997), McLachlan (1992), Gnanadesikan and alii (1989). Considerations 

related to the suitability for companies’ economic data and robustness over time 
can be found in this litterature. The main models are assessed: Fisher’s linear or 

quadratic discriminant analysis, logistical regression, and some non-parametric 

methods, such as Disqual42, Decision Trees, Neural Networks, the Neighborhood 

method, the Kernel method, Support Vector Machines. 

 

Discrimination models achieve opposition of a priori known groups. The aim in 

constructing a score may be confined to identify risk signals, and its construction 

needs to be based on a decision rule and consequently, for some models, on a 

decision threshold. However, if one wishes to obtain an operational tool, its practical 

use also requires knowledge of the probability of failure at a given horizon. 

 

Implemented on companies’ data, in order to separate failing companies from sound 

companies, the methods that result in linear combination of ratios are very robust43 

and are easy to analyse. 

 

Indeed, corporate failure is a complex phenomenon for which the actual causal 

variables are difficult to access. The score functions therefore make use of symptoms 

such as descriptors of the company’s situation before its failure. In other words, it is 

impossible to accurately define companies’ failure processes, contrary to what occurs 

in other fields of application of discriminant analysis  that are closer to physical 

science, such as shape recognition, where overlearning is easier to master and 

techniques such as neural networks are successfully applied. 

                                                 
42 This method builts discriminant function on qualitative data. It has been created by G. Saporta. A recent application on 
companies’strategic data  has been  implemented by L. Lelogeais (2003)  
43 For example, quadratic formula or methods that necessitate the determination of thresholds for the explaining variables are 
generally less stable over time. Cf. M. Bardos (2001b), M. Bardos S. Foulcher E. Bataille (2004), M. Bardos W.H. Zhu (1998b) 
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It is, therefore, the very traditional linear discriminant analysis (LDA) of Fisher that is 

used at the Banque de France. Nevertheless this technique, used on ratios built with 

companies’ accounting data, leads to functions very close to those obtained with a 

LOGIT model. We will explain why and present the reasons of our choice.   
 

VI.3.1. Fisher linear discriminant analysis 
 

Two decision rules can be implemented to estimate the LDA. 

 

We consider D the group of failing companies, N the group of non-failing companies, 

),...,,( 21 pXXXX =  the vector of the p ratios of the firm e, Nμ  and  Dμ  the means of 

X on each group, T the total variance-covariance matrix. 
 

The first decision rule responds to a geometric criteria, the distance comparison: 

 

 ),(),( ND XdXd μμ ≤ ⇔ “e is allocated to the group D” 

 

Using the metric matrix 1−T , the rule becomes : 

 

f(X) is negative ⇔ “e is allocated to the group D” 

 

where: 

)
2

()'()( 1
DN

DN XTXf μμμμ +
−−= −  is the discriminant function. 

 

This model does not require parametric assumptions, nevertheless the shape of data 

have to be rather regularly distributed (Saporta (1990)). 

The second decision rule is the Bayesian rule of minimum expected cost of error. 

In the case of multinormality and homoscedasticity of the probability distributions of 

the descriptors X on each group to be discriminated, it leads to the same discriminant 

function: 

)
2

()'()( 1
DN

DN XTXf μμμμ +
−−= − . 
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But in this case the threshold of decision is  
22/1

11/2ln
π
π

C
C    instead of 0.  

 

jiC /  is the cost of error, i.e. allocating to the group i a company which actually 

belongs to the group j, iπ  is the a priori probability to belong to the group i. 

 

One of the crucial advantages of this scoring function F is giving the possibility of 
interpretation by the mean of ratio contributions to the value of the score. 

It is possible to rewrite the score as follows: )()( ∑ −=
j

jjj pXXf α  

where: 
1)'( −−= TDN μμα  is the k coefficients vector of the function f, 2/)( D

j
N
jjp μμ +=  

is the pivot value for the jth ratio. The expression )( jjj pX −α  is the 

contribution of ratio j to the score f(X).  

 

The contributions can be interpreted in the following way: negative contributions to 

the score pinpoint weaknesses of the company, whereas positive contributions refer 

to strengths. 

 

This decomposition of the score value as the sum of the contributions is extremely 

helpful to the financial analyst who assesses the company. Generally, this expert is 

not a statistician. He uses many kinds of information, the score value being one of 

them. The contributions help him deepening the company analysis by identifying its 

weak and sound points each year, and give him the opportunity to follow the 

evolution of these points. 
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VI.3.2. Logistic regression model 
 

The logistic regression estimates the a posteriori probability under the following 

hypothesis:  

 

iX
e

iXiYPip
αβ −−

+

===

1

1)/1(           
iX

e
iXiYPip

αβ +
+

===−

1

1)/0(1  

 

where: 

1=iY  if the company Ni ∈  and  

0=iY  if Di ∈ . 

 

The likelihood is ii Y
i

Y
i

n

i
pp −

=
−Π 1

1
)1(   where n is the sample size, ND nnn += . 

The parameters  α and β  are estimated by the maximum of likelihood method. 

ip is the a posteriori probability of being sound. 

Consequently, l i
i

i
i X

p
p

pogit αβ +=
−

=
1

ln , and the decision rule can be:  

“The company i is classified sound”  ⇔  00 log1 >+⇔>⇔−> iiii Xpitpp αβ  

Another decision rule can be built on KX i >+ αβ . The introduction of the threshold K 

gives the opportunity to calibrate the decision according to the risk objective of the 

bank, quantified by error costs (Hand (1981)). 

 

VI.3.3. Comparison of LDA and logit models 
 

The much-debated comparison between Fisher LDA and LOGIT deserves further 

investigation – in terms of their theoretical properties [T. Amemiya, J. Powell (1983), 

A.W. Lo (1986), B. Efron (1975), Maddala (1999)], interpretability (the great 

advantage of Fisher’s LDA: contributions of variables to the value of the score), 

sensitivity to the sampling plan of the logistical regression [G. Celeux, J.P. Nakache 

(1994)], estimation of the probability of failure (either via a theoretical formula or by 

use of Bayes’ theorem on empirical distributions).  
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In the parametric context, the logistic regression has a wider hypothesis background 

than the Fisher linear discriminant analysis. As a matter of fact, the linearity of the 

logit corresponds to linearity of the quotient of log-likelihoods on each group:  

 

βα  x   
)( 
)( 

+=
xL
xL

N

D  which is the fundamental hypothesis (H) of the logistic 

regression model. 
 

In the case of multinormality and homoscedasticity of the probability distributions of 

the explanatory variables on each group to discriminate, Fisher linear discriminant 

analysis can be applied. At the same time, it provides the linearity of the quotient of 

the log likelihoods, the Fisher linear discriminant analysis consequently appearing as 

a particular case of logistic regression. 
 

When the hypothesis (H) is verified by the data, the a posteriori probability is 

calculated by the same formula in both models. 

 

iX
e

iXiYPip
αβ −−

+

===

1

1)/1(   and 
iX

e
iXiYPip

αβ +
+

===−

1

1)/0(1 . 

 

However, as a matter of fact, this hypothesis is generally not verified. Then, the use 

of these theoretical formulae are dangerous, since they do not fit to the data, and 

when the sample is large enough, it is by far better to estimate the probability of 

failure using the Bayes theorem applied to the  empirical distributions of the score on 

each group as developped in VI.4. 
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VI.4. PROBABILITY OF FAILURE 
 
The probability of failure provides a measure of the intensity of risk. It is much 

more informative than a decision threshold. Several crucial issues determine the 

quality of the tool:  

 

• The forecasting horizon must be consistent with the nature of the data. 
 

o There is by definition a lag of a few months between balance sheet 

variables and the time at which the company is assessed, and these 

variables describe what has occurred over the course of the past year; 

they are consequently better suited to a medium-term forecast than to a 

short-term one. Balance sheets undoubtedly provide useful and robust 

information, provided that the assessment and the forecasting horizon 

are well matched. 

 

 With a one-year horizon, it might be thought that it would be 

possible to create a short-term indicator, which, if it were to be 

re-estimated sufficiently often, would allow to track the conditions 

under which companies are operating. But such an indicator 

would then follow the business cycle closely.  

 However, this kind of perspective is very difficult to work with as 

frequent re-estimation in a changing environment is deemed to 

lead to functions that always lag the current situation. 

 

o It has therefore been decided to work on a medium-term horizon with 

quantitative variables based on balance sheets, and which are 

submitted to a method of financial analysis whose quality is long 

established. Given that balance sheet structures are related to the 

sector to which a company belongs, scores are created according to 

the major sectors (industry, wholesale trade, retail trade, transport, 

construction, business services). 
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• An estimate of a posteriori failure probabilities well suited to the empirical 
data using Bayes’ theorem is closely associated with the determination of risk 

classes. Robustness over time must be ensured for the average probability 

per risk class. The confidence interval of this average indicates the accuracy 

and provides a measure of what could happen in a worst case scenario. 

 

The probability of failure for a company e for which the scores’value s belongs to the interval 
r can be written as follows: 

)(
)/()/(

rsp
DersprsDeP D

∈
∈∈

=∈∈
π

NNDD

DD

pp
p

ππ
π
+

=  

The conditionnal probability on each group is: 
)/( DersppD ∈∈=  and )/( NersppN ∈∈=  

The a priori probability of faillure is Dπ  and  DN ππ −=1  is the probability of not failing. 
 

Box 1: Bayes` theorem 

 

Estimating probability may be associated with the theoretical model used or may be 

done on the basis of empirical distributions and Bayes’ theorem (see Box 1). The 

choice between the two will depend on how representative the files are and how 

close to the assumptions of the model the data are. 

Thanks to the importance and representativity of the Banque de France files, 

empirical distributions can be used in a very efficient way, thus coming closer to 

reality than theoretical formulas of models whose underlying assumptions are not 

completely satisfied. Furthermore the empirical-distributions-method allows 

controlling the accuracy of estimated probabilities and homogeneity of risk classes. 

 

The algorithm of the estimation is the following: the a posteriori probability of failure is 

computed on small intervals of score for each year (in the table: 1999 to 2002); the 

average μ of these yearly results and the standard error of this average are 

computed for each class of risk. Some of the neighboured small intervals are 

progressively gathered with the aim of reducing the standard error and narrowing the 

confidence intervals of the average a posteriori probability of failure. Table 1 presents 

the recent results for manufacturing industry with the BDFI2 score computed on 

samples of about 40,000 french companies each year.  
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The last column presents the upper limit of the confidence interval, it represents the 

risk in the worst case scenario at a 99% level; with representative large samples this 

method gives probabilities very close to the reality, as shown by control studies. In 

order to ensure PD accuracy, confidence intervals must not overlap one another. 

This gives an upper limit to the number of classes: too many classes would implicate 

the overlapping of confidence intervals and a lack of differenciation between the 

classes. 

 

BDFI2 SCORE DISTRIBUTION, BY CATEGORY 

Dp  and Np  
BDFI2 SCORE DISTRIBUTION, BY CATEGORY 

FACTORING IN THE FAILURE RATE 
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Exhibit 1: BDFI2 score distribution  Exhibit 2: BDFI2 score distribution 
 

A posteriori probability calculated by year Confidence interval 
Score Interval 

 
Risk 
class 

Proba  
1999 

Proba  
2000 

Proba  
2001 

Proba  
2002 

Average 
μ 

Standard 
deviationσ Inf sup 

BDFI2 <-2.4 1 44.65 46.94 44.21 43.11 44.73 1.61 42.31 47.14 

-2.4 ≤ BDFI2<-1.8 2 34.23 32.81 33.89 30.91 32.96 1.49 30.72 35.2 

-1.8 ≤ BDFI2<-0.8 3 22.6 22.9 23.57 23.2 23.07 0.42 22.44 23.69 

-0.8 ≤ BDFI2<-0,3 4 17 18.11 18.98 17.96 18.01 0.81 16.79 19.23 

-0,3 ≤ BDFI2<0 5 11.36 12.66 15.37 13.85 13.31 1.71 10.74 15.88 

0 ≤ BDFI2<0,4 6 8.61 9.52 9.56 9.48 9.29 0.45 8.61 9.98 

0,4 ≤ BDFI2<1,2 7 3.55 4.38 4.48 4.53 4.24 0.46 3.55 4.93 

1,2 ≤ BDFI2<1,6 8 1.92 1.69 2.14 2.13 1.97 0.21 1.65 2.29 

1,6 ≤ BDFI2<2,4 9 0.65 0.8 0.93 1.02 0.85 0.16 0.6 1.09 

2,4 ≤ BDFI2 10 0.31 0.36 0.33 0.31 0.33 0.02 0.29 0.36 

Source : Banque de France – Fiben  November 2006 
 

Table 1: A posteriori probability of failure by score interval 
Three years horizon – Manufacturing sector 1999-2002  

A prori probability ist the failure rate at three years horizon: 7.56% 
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Several methods have been tested to estimate the confidence intervals: binomial 

model, central limit theorem approach, parametric or non parametric Bootstrap 

(Efron, Tibshirani (1993), Bardos (2001a), Hansen, Schuermann (2006)). Applied to 

Banque de France data, they lead to rather similar intervals: the tightest are given by 

the binomial model, the largest by bootstrap method. In table 1, the central limit 

theorem is applied.  

 

A wide scale of a posteriori probabilities is obtained: from 0.33% for the safest 

companies to 44.73% for the riskiests. The number of risk classes is limited by the 

overlapping property. It is a guarantee of true differentiation between risk classes. 

 
At-risk classes have a posteriori probabilities of failure much higher than the a priori 

probability (classes 1 to 5). The neutral class’ a posteriori probability is close to its a 

priori probability (class 6). Sound classes have a posteriori probabilities much lower 

than their a prior probability (classes 7 to 10).  

 

The risk classes building process is linked to the estimation of the a posteriori failure 

probability. The aim is to guarantee the homogeneity of PD inside each class by 

measuring PD accuracy and controlling medium term stability of the classes. The 

operational use of scores implies the necessity of yearly score quality controls. 

Besides good allocation rates, the stability of risk classes is tested by re-estimating 

the PDs and their confidence intervals in order to avoid overlapping (Bardos (2006)). 

Furthermore, a decrease of discriminating power would imply the re-estimation of the 

score function itself. 

 
  (%) 

Risk class 
1 2 3 4 5 6 7 8 9 10 

2.6 2.6 6.4 4.3 3.8 7.1 23.7 14.4 21.6 13.5 
 

 At-risk classes Neutral Sound classes  
 19.7 7.1 73.2  

 

Table 2: Breakdown of manufacturing industry companies among risk classes (2005) 
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VI.4.1. A posteriori probability estimation by several methods 
 

It must be stressed that very often the data do not verify the parametric assumptions 

of the chosen model. This holds for the logistic regression model as well as for the 

LDA in the case of multinormality and homoscedasticity of the descriptors on each 

group. The following example shows that this is a serious problem.  

 

We estimate the discriminant function L with a logistic regression. In table 3 the a 

posteriori probability of failure is estimated with the Bayes theorem applied to 

empirical distributions as presented in VI.4 (see Box 1). 
 
Score interval - 2,5   - 2 - 1,5      - 1    - 0,5   - 0 0,5           1          1,5            2       2,5 

Failure Probability 
(%) 

67.8 57.4 44.2 30.7 20.5 13.4 7.1 3.4 1.7 1.2 0.8 0.6 

Breakdown of firms 
in the intervals (%) 

1.6 0.6 1.3 2.4 5.4 9.8 13.5 16.6 15.1 12.6 8.9 12.2 

Source : Banque de France – Centrale des bilans  
 

Table 3: Probability of using empirical distributions of L on each group and the Bayes 

theorem on each score interval 

 

In table 4 the a posteriori probability of failure is estimated with the theoretic formula 

of the model and the mean of this probability is calculated on the same intervals. The 

results in table 3 and table 4 are quite different. That is why, in case of large and 

representative data sets, the first method better suited to the real data should be 

preferred. 
 
Score interval - 2,5   - 2 - 1,5      - 1    - 0,5   - 0 0,5           1          1,5            2       2,5 

Average failure 
theoretical 
probability on each 
interval (%) 

96.8 90.5 85.2 77.7 67.9 56.2 43.8 32.1 22.3 14.8 9.5 4.7 

Breakdown of firms 
in the intervals (%) 

1.6 0.6 1.3 2.4 5.4 9.8 13.5 16.6 15.1 12.6 8.9 12.2 

Source : Banque de France – Centrale des bilans  
 

Table 4: Probability of failure using the logistic model L theoretical formula  

XXL αβ +=)( . For a company i, the failure probability is given by     

           

iX
e

iXiYPip
αβ +

+

===−

1

1)/0(1  

 

These methods, implemented on new large samples, lead to similar findings (Kendaoui 

(2007)). 
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VI.4.2. Influence of Sampling 
 

The method of sampling44 is another important element in logistic regression 

estimation (Celeux, Nakache (1994)). 

 

We consider the random variable T defined by:  

T=1 if the observation is in the sample, 

T=0 if not. If X is the vector of explanatory variables, we have:  

 

==== )1,/0( TxXYP  

)1,/1()/1()0,/1()/0(
)0,/1()/0(

=====+=====
=====

YxXTPxXYPYxXTPxXYP
YxXTPxXYP  

 

As the sampling is independent of X :  

 

==== )1,/0( TxXYP  

)1/1()/1()0/1()/0(
)0/1()/0(

====+====
====

YTPxXYPYTPxXYP
YTPxXYP (equation (E)) 

 

The influence of the sampling scheme on logistic regression is important, as shown 

below. 

 

We consider two logistic regressions: 

L estimated on a sample with an equal random sampling rate on each group D 

or N; 

L’ estimated on a sample with different random sampling rates on group D and 

on group N. 

 

logit βα +=Π XX )(  corresponds to the regression L and the logit )(* XΠ  

corresponds to the regression L’ .  

 

It can be shown using equation (E) that: 

 

                                                 
44 Of course only representative samples are considered here, otherwise the variables selection should be biased. 
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      logit )(* XΠ = logit 
N
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lnlnln)( ++=++Π  

 

where: 

Nn  and Dn  are the respective number of companies in the samples of groups 

N and D. 

 

Consequently ')(' βα += XXL  where 
N

D

D

N

n
n

π
π

ββ ln' += .  

 

This shows that the difference between L and L’ appears only in the constants β 

and β’, but not in the coefficients α.  

 

In the Tables 4 and 5, the estimations concern the same companies. If the 

average failure probabilities by interval are the same, except for the queue values, 

the proportions of companies in each interval are very different. This is the 

consequence of very different distributions, those of L’ (table 5) being translated 

from those of L (table 4) by 
N

D

D

N

n
n

π
π

ln , and individual failure’ probabilities of a 

company estimated by the two models differ in a significative way.  

 

Score interval                         - 2,5          - 2         - 1,5        - 1          - 0,5       - 0           0,5           1             1,5            2         2,5 

Average failure 
probability (%) 

95.5 90.5 85.2 77.7 67.9 56.2 43.8 32.1 22.3 14.8 9.5 4.8 

Breakdown of firms in 
the intervals (%) 

6.7 6.2 10.8 14.6 16.4 14.6 11.7 8.6 5.2 2.8 1.4 1.0 

Source : Banque de France – Centrale des bilans  
 

Table 5: Probability of failure by risk class using the logistic model L’ taking in account a 

sampling scheme with unequal random sampling rates 

iX
e

iXiYPip
αβ +

+

===−
'

1

1)/0(1  
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VI.4.3. Other a posteriori probabilities on subpopulations 

 

The BDFI2 score has been estimated on the whole manufacturing industry 

population. The failing companies group gathers companies whose failure will occur 

during the three years following the observed accounts date. It has led to compute a 

3 year horizon probability of failure.  

 

Two important questions arose: 

• How to estimate a one year horizon probability of failure? 

• Is it possible to take into consideration the size of the company to estimate its 

probability of failure?   

 

VI.4.3.1. Probability at a one year horizon 

 

In VI.4.1 it has been shown that a direct estimation of a score at a 1 year horizon of 

failure would be based on a too small sample of failing companies, due to the lack of 

accounting data when the failure is imminent. Such an estimation would be of poor 

quality.  

 

Chart 3 leads to a solution of this problem. It shows that the closer to the failure the 

company is, the more negative its score is. In consequence, using the already 

estimated BDFI2 score, its distributions according to the horizon of failure give the 

possibility to oppose the one year horizon failing companies to the other ones.  

Then risk classes and associated probabilities at a one year horizon can be 

estimated (Table 6). In order to obtain non overlapping confidence intervals, only six 

risk classes have been defined.  
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BDFI2 SCORE DISTRIBUTION, BY FAILURE HORIZON  
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Source : Banque de France – Fiben 
 

Exhibit 3: BDFI2 Score distribution by failure horizon 

 
 

 Risk 

class 

Proba 

1999 

Proba 

2000 

Proba 

2001 

Proba 

2002 
μ σ Inf sup 

BDFI2 <-2,4 1 23,48 26 21,85 22,97 23,58 1,75 20,95 26,21 

-2,4 ≤ BDF I2 < -1,3 2 11,14 11,37 12,38 11,55 11,61 0,54 10,8 12,42 

-1,3 ≤ BDF I2 < -0,2 3 5,63 4,93 6,16 5,51 5,56 0,51 4,8 6,32 

-0,2 ≤ BDF I2 < 0,5 4 1,45 1,9 2,09 1,81 1,81 0,27 1,41 2,21 

0,5 ≤ BDF I2 < 1,4 5 0,41 0,55 0,54 0,53 0,51 0,06 0,41 0,6 

1,4 ≤ BDF I2 6 0,1 0,13 0,09 0,09 0,1 0,02 0,07 0,13 
 

 Neutral Class                                                             One year a priori probability = 2,28% 
 

Source : Banque de France – Fiben 
Table 6: A posteriori probability of failure at a one year horizon  
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VI.4.3.2. Probability according to the company size 

 

It is well known that company size has an influence on failure risk. The first column of 

table 7 shows the decrease of failure rate as the size increases. Nevertheless the 

size has not been included in the list of score explanatory variables. The aim was to 

get a score function giving a synthetic view of the idiosyncratic financial situation of 

the company and to avoid to penalize systematically the company by its size. A way 

of taking into account the size is to study score distributions according to the size and 

to the category (failing and non failing companies). In chart 4, as the distributions only 

differ between categories, but not between sizes inside the same category, the score 

appears not to be size dependent. Then, it is possible to estimate the a posteriori 

probability of failure by size on the same risk classes than for the entire population. 

The results in table 7 stress the soundness of many small and medium enterprises, 

and at the same time, identify high risk SMEs. 
 

BDFI2 SCORE DISTRIBUTION, BY CATEGORY 
AND STAFF COUNT 
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Source : Banque de France – Fiben 

Exhibit 4: BDFI2 Score distribution by category and staff count 
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(%) 

  Risk classes 
Size Failure rate 45 Very sound Sound Neutral Risky Very Risky 
Small companies 
 

9.86 
 

0.88 
[0.62 ; 1.14] 

4.53 
[3.49 ; 5.56] 

11.77 
[8.91; 14.63] 

24.21 
[21.86 ; 26.55] 

44.86 
[41.14; 48.57] 

Medium companies 
 

7.22 
 

0.61 
[0.39;  0.83] 

3.28 
[2.90 ; 3.66] 

10.81 
[9.75 ; 11.88] 

21.0 
[19.26 ; 22.74] 

39.65 
[37.66 ; 41.64] 

Large companies 
 

2.94 
 

0.32 
[0.10 ; 0.54] 

1.38 
[1.15 ; 1.61] 

5.27 
[4.64 ; 5.90] 

8.50 
[6.71; 10.28] 

15.30 
[11.44 ; 19.17] 

All 7.56 0.66 3.43 10.69 20.83 38.89 
  [0.51 ; 0.81] [2.96 ; 3.91] [9.43 ; 11.95] [19.92 ; 21.74] [36.90; 40.87]  

 

Source : Banque de France – Fiben 

In blue : confidence interval at 95 % level 

Table 7: A posteriori probability of failure at a three year horizon and confidence intervals, by 

size and risk classes – Manufacturing Industry 

 

 

 

VI.5. SUMMARY AND CONCLUSION 
 

The scores constructed at the Banque de France cover a wide range of sectors. 

Applied to a representative sample of firms whose turnover exceeds EUR 0.75 

million, they enable studying many issues related to credit risk and debated in the 

Basle Committee such as risk correlation, risk and business cycle, risk contagion, 

transition matrixes and companies’ trajectories, risk concentration.  

 

The score can help in individual risk diagnosis of companies, but it is not a substitute 

to a rating. A rating, based on expertise and human judgment, takes into account not 

only quantitative data, but also many qualitative information which could not enter in 

a modellisation. As the result of a scoring system can be an input in the risk 

assessment process, its quality must be as high as possible. 

 

Deepening the study of discriminant analysis techniques it appears that the quality of 

a score is not necessary dependent on using either a LDA model or a LOGIT model. 

As a matter of fact it is a wrong idea, but unfortunately widely believed, that Fisher 

LDA requires multinormality and homoscedasticity of explanatory variables on each 

group. The geometric decision rule gives good results in many data configurations. 

The assumptions of logistic regression are semi parametric and should be verified 

before use.  
                                                 
45Failure rate at a three year horizon: it is taken as a priori probability of failure. 
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More determining is the quality of the selection process of relevant explanatory 

variables. If qualitative data have to be used, LOGIT will be preferred. To study a 

particular case, comparison between the logistic score value and the weights of each 

explanatory variable will give an idea of their respective importance. But with a Fisher 

LDA, the interpretation of each company case can be more precise by the means of 

score decomposition in ratio’ contributions: it gives the company position vis-à-vis the 

means of failing and non failing groups. It delivers the weak and sound points of the 

company with accuracy. 

 

In order to study individual risk, as well as risk for an entire population, the knowledge 

of each company’s probability of failure is an essential instrument. The pertinence of 

the estimation method is at stake in risk forecasting. The proposed method, 

implementing the Bayes theorem on the empirical distributions of the score function, 

is generally better suited to the real data than the theoretical formula of the two 

studied models, LDA and LOGIT. Relevant determination of risk classes limits their 

number, and by the fact increases their pertinence in term of homogeneity and 

differentiation which are required properties by the Basle II agreement. 
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VVIIII..  CCOOMMPPAARRIINNGG  TTHHEE  PPEERRFFOORRMMAANNCCEE  OOFF  EEXXTTEERRNNAALL  CCRREEDDIITT  

AASSSSEESSSSMMEENNTT  IINNSSTTIITTUUTTIIOONNSS  TTOO  OOTTHHEERR  RRAATTIINNGG  SSOOUURRCCEESS  

BBYY  MMEEAANNSS  OOFF  PPRROOBBAABBIILLIITTIIEESS  OOFF  DDEEFFAAUULLTT  WWIITTHH  AA  

CCOONNCCRREETTEE  AAPPPPLLIICCAATTIIOONN  TTOO  TTHHEE  EEUURROOSSYYSSTTEEMM  CCRREEDDIITT  

AASSSSEESSSSMMEENNTT  FFRRAAMMEEWWOORRKK  

F. COPPENS / G. WINKLER 

          NATIONAL BANK OF BELGIUM / OESTERREICHISCHE NATIONALBANK 

 

VII.1. INTRODUCTION 
 

External credit assessment institutions, or rating agencies, play an important role in 

the markets for credit risk. By means of their credit ratings they provide information 

that is of crucial relevance for investors and the whole financial services industry as 

well as its regulators. Furthermore, they often act as a benchmark for other rating 

sources whose performance is compared with the externals´ either by themselves or 

by their supervisors. For both issues a clear understanding of the meaning of and the 

information inherent in external credit assessment institutions´ ratings is of the utmost 

importance. 

 

In this context, the problem of assigning probabilities of default to certain rating 

grades has found considerable attention by many different market players. It is also 

essential for institutions like the Eurosystem to clarify what specific rating grades 

mean in terms of probabilities of default since the Eurosystem like most other central 

banks also partly relies on external credit institutions´ ratings in its monetary 

operations. Though it is well known that agencies´ ratings may to some extent also 

be dependent on the expected severity of loss in the event of default (e.g. Cantor and 

Falkenstein 2001), a clear relation between probabilities of default and rating grades 

definitely exists, and it has been the object of investigation of several earlier studies 

(Cantor and Falkenstein 2001, Blochwitz and Hohl 2001, Tiomo 2004, Jafry and 

Schuermann 2004 and Christensen et al. 2004).  
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Once having assigned probabilities of default to external credit assessment 

institutions´ rating grades, one may wish to compare the performance of external 

credit assessment institutions´ rating grades to the risk buckets of other rating 

sources by means of probabilities of default in a second stage. As a matter of fact, 

external credit assessment institutions are often regarded as a benchmark for all 

other types of rating providers (e.g. Hui et al. 2005). Benchmarking involves the 

comparison of a rating source`s probabilities of default with results from alternative 

sources. Hence, methods are required to test empirically whether the underlying 

probabilities of default of two rating buckets stemming from different rating sources 

are equal. 

 

This paper tackles the two issues of assigning probabilities of default to rating grades 

and comparing the performance of agencies to other rating sources by means of their 

probabilities of default from the perspective of a (system of) central bank(s) – the 

Eurosystem – in the special context of the Eurosystem Credit Assessment 

Framework. Within this framework, the Governing Council of the European Central 

Bank (ECB) explicitly specified the ECB´s understanding of high credit standards 

when deciding that a minimum credit quality of “A“46 should be required for all sorts of 

collateral to become eligible for Eurosystem monetary policy operations (European 

Central Bank 2005).  

 

Hence, we aim at deriving a probability of default equivalent to “A” in this paper in a 

first step. In the empirical application of our methods which we regard as applicable 

in the general problem of assignment of probabilities of default to any rating grades 

we will thus restrict ourselves to a demonstrative single case - the “A” grade. Drawing 

on the earlier works of Blochwitz and Hohl 2001, Tiomo 2004, and Jafry and 

Schuermann 2004, we analyze historical default rates published by the two rating 

agencies Standard&Poor´s and Moody´s and derive the ex-ante benchmark for the 

Eurosystem Credit Assessment Framework. Technically speaking, we use data of 

Standard&Poor´s and Moody´s publicly available rating histories (Standard&Poor´s 

2005, Moody´s 2005) to construct confidence intervals for the level of probability of 

default to be associated with “A”.  

                                                 
46 Note that we focus on the coarser category “A” throughout this paper. The “A”-grade comprises three sub-categories (named 

A+, A, and A- in the case of Standard&Poor´s, and A1, A2, and A3 in the case of Moody´s, respectively). However, we do 
neither differentiate between them nor treat them separately as the credit threshold of the Eurosystem was also defined using 
the coarser category. 
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This results in one of the main outcomes of our work, i.e. the statistical deduction of a 

benchmark of "A" for the Eurosystem Credit Assessment Framework in terms of a 

probability of default. 

 

The second aim of this paper is to propose simple mechanisms that allow 

comparisons between the performance of external credit assessment institutions and 

any other rating source by means of probabilities of default. In the special context of 

our paper, this mechanism allows for a performance checking within the Eurosystem 

Credit Assessment Framework. Our work rests on the studies of Blochwitz and Hohl 

2001 and Tiomo 2004, and its basic idea is to compare ex-post data (i.e. the realized 

default rates of pools of obligors considered eligible) to the ex-ante desired default 

rate expected by the Eurosystem (i.e. the ex-ante benchmark probability of default 

derived for the “A”-grade). Blochwitz and Hohl 2001 and Tiomo 2004 conducted 

Monte Carlo simulations to scrutinize which default rates one might expect for certain 

rating grades in the worst case. The results of their studies were used to define the 

thresholds for performance monitoring. In this context, it is important to note that the 

thresholds were uniformly applied to all rating sources without differentiating 

according to the number of rated obligors (i.e. the size of a certain portfolio). In our 

approaches, however, we account for the respective number of objects rated by a 

certain credit assessment source: We apply the technique of hypothesis testing. 

Moreover, interpreting p-values as frequencies results in a (simple) validation rule 

that can – in addition to an approach relying on a determination of fixed upper limit - 

guarantee a long run convergence to the probability of default of the benchmark.  
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VII.2. MODELLING DEFAULTS USING A BINOMIAL DISTRIBUTION 
 

It is worthwhile mentioning that the probability of default itself is unobservable 

because the default event is stochastic. The only quantity observable and hence 

measurable is the empirical default frequency. In search of the meaning of “A” in 

terms of a one-year probability of default, we will thus have to make use of a 

theoretical model that rests on certain assumptions about the rules governing default 

processes. As it is common practice in credit risk modelling, we follow the so-called 

cohort method (in contrast to the duration approach,  see Lando and Skoedeberg 

2002) throughout this paper and furthermore assume that defaults can be modelled 

using a binomial distribution (Nickel et al. 2000, Blochwitz and Hohl 2001, Tiomo 

2003, Jafry and Schuermann 2004). The quality of each model's results in terms of 

their empirical significance depends on the adequacy of its underlying assumptions. 

As such, this section briefly discusses the binomial distribution and analyses the 

impact of a violation of the assumptions underlying the binomial model. It is argued 

that postulating a binomial model is taking a risk-averse point of view.  

 

VII.2.1. The cohort method and the binomial model47 
 

We decide to follow the cohort method, as the major rating agencies document the 

evolution of their rated entities over time on the basis of so-called static pools 

(Standard&Poor´s 2005, Moody´s 2005). A static pool consists of NY rated entities 

with the same rating grade at the beginning of a year Y.  

 

In our case, NY denotes the number of entities rated “A” at the beginning of year Y. 

The so-called cohort method simply records number of entities DY that have migrated 

to the default grade by year-end out of the initial NY (Nickel et al. 2000, Jafry and 

Schuermann 2004). 

 

 

 

 

                                                 
47 For a more detailed treatment of the binomial distribution see e.g. Rohatgi (1984), and Moore and McCabe (1999). 
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Following now the opening remarks to chapter 2, let the (observed) number of 

defaults in each year Y, DY, be binomially distributed with a 'success probability' p 

and a number of events NY  - in notational form: )p;N(BD YY ≈  - then it follows that 

each individual (“A”-rated) entity has the same (one-year) probability of default (PD) 

'p' under the assumptions of the binomial distribution. Moreover, the default of one 

company has no influence on the (one-year) defaulting of the other companies, i.e. 

the (one-year) default events are independent. 

 

The number of defaults DY can take on any value from the set { }YN,...2,1,0 . Each 

value of this set has a probability of occurrence given by the probability density 

function of the binomial distribution which, under the assumptions of constant p and 

independent trials, can be shown to be equal to:  
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The cumulative binomial distribution is given by 
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The mean and the variance of the binomial distribution are given by  
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As indicated above, a clear distinction has to be made between the 'probability of 

default' (i.e. the parameter p in formulae (1) and (1') and the 'default frequency'. 

While the probability of default is the fixed (and unobservable) parameter 'p' of the 

binomial distribution, the default frequency is the observed number of defaults in a 

binomial experiment, divided by the number of trials ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Y

Y
Y N

ndf  (see column 'default 

frequency' in table 1).  
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This observed frequency varies from one experiment to another, even when the 

parameters p and NY stay the same. It can take on values from the set  
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The default frequency may thus be understood as a random variable. Its mean and 

variance  

 

can be derived from formulae (1) and (1'):  

Y

2
df

df

N
)p1(p

p

Y

Y

−
=

=

σ

μ
         (2') 

 

The probability density function can be derived from (1) by setting 
Y

Y
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As 
⎭
⎬
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YYY
Y  , this distribution is discrete. 

 

VII.2.2. The binomial assumptions 
 

It is of crucial importance to note that formulae (1) is derived under two assumptions. 

Firstly, the (one-year) default probability should be the same for every A-rated 

company. Secondly, the A-rated companies should be independent with respect to 

the (one-year) default event. The default of one company in one year should hence 

not influence the default of another A-rated company within the same year. 
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VII.2.2.1. The constant p 
 

It may be questioned whether the assumption of a homogeneous default probability 

for all “A”-rated companies is fulfilled in practice (e.g. Blochwitz and Hohl 2001, 

Tiomo 2004, Hui et al. 2005, Basel Committee on Banking Supervision 2005b). The 

distribution of defaults would then not be strictly binomial. Based on assumptions 

about the distribution of PDs within rating grades, Blochwitz and Hohl 2001 and 

Tiomo 2004 use Monte Carlo simulations to study the impact of heterogenous PDs 

on confidence intervals for PDs. The impact of a violation of the assumption of a 

uniform PD across all entities with the same rating may, however, also be modelled 

using so called 'mixed binomial distribution' of which the lexian distribution is a 

special case. 

 

The lexian distribution considers a mixture of 'binomial subsets', each subset having 

its own PD. The PDs can be different between subsets. The mean and variance of 

the lexian variable x, being the number of defaults among n companies, are given 

by48  

 

)pvar()1n(n)p1(pn
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      (4) 

 

where p  is the average value of all the (distinct) PD's and var(p) is the variance 

of these PD's.  

 

Consequently, if a mixed binomial variable is treated as a pure binomial variable, its 

mean would still be correct, whereas the variance would be under-estimated when 

the 'binomial estimator np(1-p)' is used (see the additional term in (4)). The mean and 

the variance will be used to construct confidence intervals (see infra). An under-

estimated variance will lead to narrower confidence intervals. Within our context, a 

narrower confidence interval leads to a lower (upper-)limit and this implies a risk 

averse approach. 

 

                                                 
48 See e.g. Johnson N.I (1969) 
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VII.2.2.2. Independent trials 
 

Several methods for modelling default correlation have been proposed in literature 

(e.g. Nagpal/Bahar (2001), Servigny/Renault (2002), Blochwitz/When/Hohl (2003), 

Blochwitz/When/Hohl (2005). They all point to difficulties of measuring correlation.  

 

Apart from the difficulties involved, there are strong arguments suggesting that 

accounting for correlation does not seem to be necessary for our purposes: Firstly, 

looking at Standard and Poor´s historical default experiences in table 1, we see that, 

except for the year 2001, not more than one company defaulted per year – a fact 

which indicates that correlation cannot be very high. Secondly, not accounting for 

correlation leads to confidence intervals that are more conservative49. This is to be 

supported from a risk management perspective since the intention of the Traffic Light 

Approach is to protect the Eurosystem from losses. Empirical Evidence for these 

arguments is provided by Nickel et al. 2000. 

 

 

VII.3. THE (BINOMIAL) DISTRIBUTION OF THE BENCHMARK 
 

Modelling default frequencies using the binomial distribution requires an estimate of 

its parameters p and NY. 

 

VII.3.1. The benchmark`s PD 
 

Table 1 shows data on defaults within Standard&Poor's class of A-rated issuers. (The 

corresponding results for Moody´s are given in Annex 1.) The first column lists the 

year, the second column shows the number of A-rated issuers for that year. The 

column 'Default Frequency' is the observed one-year default frequency among these 

issuers. The last column gives the average default frequency over the 'available 

years' (e.g. the average over the period 1981-1984 equals 0.05%).  

                                                 
49 This is, just as in the case of heterogeneous PD's, due to the increased variance when correlation is positive. As an example, 

consider the case where the static pool can be divided in two subsets of size N1 and N2 (N1 + N2 =N). Within each subset, 
issuers are independent, but between subsets they are positively correlated. The number of defaults in the whole pool is then 
a sum of two (correlated) binomials. The total variance is given by 

1211 2)p1(pN)p1(pN σ+−+− , which is again 
higher than the 'binomial variance'. 
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Number of Issuers Default Frequency Average(1981-YYYY)
1981 494 0.00% 0.00%
1982 487 0.21% 0.11%
1983 466 0.00% 0.07%
1984 471 0.00% 0.05%
1985 510 0.00% 0.04%
1986 559 0.18% 0.07%
1987 514 0.00% 0.06%
1988 507 0.00% 0.05%
1989 561 0.00% 0.04%
1990 571 0.00% 0.04%
1991 583 0.00% 0.04%
1992 651 0.00% 0.03%
1993 719 0.00% 0.03%
1994 775 0.13% 0.04%
1995 933 0.00% 0.03%
1996 1027 0.00% 0.03%
1997 1106 0.00% 0.03%
1998 1116 0.00% 0.03%
1999 1131 0.09% 0.03%
2000 1118 0.09% 0.04%
2001 1145 0.17% 0.04%
2002 1176 0.09% 0.04%
2003 1180 0.00% 0.04%
2004 1209 0.00% 0.04%

0.0400%
0.0671%

average 1981-2004
standard deviation 1981-2004  

 Source: Standard&Poor's, "Annual Global Corporate Default Study: Corporate defaults poised to rise in 2005" 

Table 1: One year default frequency within Standard an Poor`s A rated class 

 

The average one-year default frequency over the whole observation period lasting 

from 1981 to 2004 is 0,04%, the standard deviation is 0,07%. 

 

The maximum likelihood estimator for the parameter p of a binomial distribution is the 

observed frequency of success. Table 1 thus gives for each year between 1981 and 

2004 a maximum likelihood estimate for the probability of default of S&P's class of A-

rated companies, thus 24 estimators.  
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One way to combine the information in these 24 estimates is to apply the Central 

Limit Theorem to the arithmetic average of the default frequency over the period 

1981-2004 which is 0.04% according to table 1. As such, it is possible to construct 

confidence intervals for the true mean xμ  of the population around this arithmetic 

average. The Central Limit Theorem states that the arithmetic average x  of n 

independent random variables ix , each having mean iμ  and variance 2
iσ , is 

approximately normally distributed with parameters  
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(see e.g. DeGroot (1989), and Billingsley (1995)). Applying this theorem to S&P's 

default frequencies - random variables with pi =μ and ii Npp )1(2 −=σ - this implies 

that the arithmetic average of S&P's default frequencies is approximately normal with 

mean  
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Estimating p from S&P data ( %04.0ˆ =p  for “A” and %27.0ˆ =p  for “BBB”), confidence 

intervals for the mean - the default probability p - can be constructed. These 

confidence intervals are given in table 2 for S&P's rating grades “A” and “BBB”.  

 
Confidence 

level Lower Upper

95.0% 0.01% 0.07%
99.0% 0.00% 0.08%
99.5% 0.00% 0.09%
99.9% 0.00% 0.10%

95.0% 0.17% 0.38%
99.0% 0.13% 0.41%
99.5% 0.12% 0.43%
99.9% 0.09% 0.46%

S&P A

S&P BBB

 

Table 2: Confidence intervals for the xμ  of S&P's 'A' compared to 'BBB' 
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Please note that in applying the Central Limit Theorem it was assumed that pi =μ , 

i.e. that the PD remains constant over time. If this is not the case, then the above 

confidence intervals are intervals around the average PD, i.e.  

 

p
n
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n
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This is, however, consistent with the statement of the rating agencies that they rate 

'through the cycle'.  

 

The necessary condition for the application of the central limit theorem is the 

independence of the annual binomial variables. This is hard to verify. Nevertheless, 

several arguments in favour the above method can be brought forward. 

 

Firstly, a quick analysis of the data in table 1 shows that there are no visible signs of 

dependence among the default frequencies. Secondly, and probably  most 

convincingly, the data in table 1 confirm the findings on the confidence intervals that 

are found in table 2. Indeed, the last column in table 1 shows the average over 2, 3, 

24 years. As can be seen, these averages fall within the confidence intervals (see 

table 2), except for a few of them. For these exceptions it can be argued that, firstly, 

not all values must be within the limits of the confidence intervals (in fact for a 99% 

confidence interval one exception is allowed every 100 years, for a 95% interval it is 

even possible to exceed the limits every 20 years) and, secondly, we did not always 

compute 24-year averages while the Central Limit Theorem was applied to a 24-year 

average. When random samples of size 23 are drawn from these 24 years of data, 

the arithmetic average seems to be within the limits given in table 2. The third reason 

that supports our findings is a theoretical one. In fact, a violation of the independence 

assumption would change nothing to the findings about the mean xμ . However, the 

variance would no longer be correct as the covariances should be taken into account. 

Furthermore, dependence among the variables would no longer guarantee a normal 

distribution.  
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The sum of dependent and (right) skewed distributions would no longer be symmetric 

(like the normal distribution) but also skewed to the right. Assuming positive 

covariances, this would lead to wider confidence intervals. Furthermore, as the 

resulting distribution will be skewed to the right and as values lower than zero would 

not be possible, using the normal distribution as an approximation will lead to smaller 

confidence intervals. As such, a violation of the independence assumption implies a 

risk-averse result.  

 

We can thus conclude that there is strong evidence to believe that the probability of 
default for the binomial process that models the observed default frequencies of 

Standard&Poor's A-grade is somewhere between 0.00% and 0.1%.  

 

An additional argument can be brought forward which supports our findings: Firstly, in 

the definition of the A-grade we are actually also interested in the minimum credit 

quality that “A-grade” stands for. We want to know the highest value the probability of 

default can take to be still accepted as equivalent to “A”. Therefore, we could also 

apply the Central Limit Theorem on the data for Standard&Poor´s BBB. Table 2 

shows that there the PD of BBB is probably higher than 0.1%.  
 

VII.3.2. A rule fort he N-year average & Moody`s default frequencies 
 

The PD of a rating source is unobservable. As a consequence, a performance 

checking mechanism can not be based on the PD alone. In this section, it is shown 

that the Central Limit theorem could also be used to design a mechanism that is 

based on an average observed default frequency.  

 

In fact, in section VII.3.1 it was found that 24-year average of S&P's default 

frequencies is, according to the Central Limit Theorem, normally distributed:  

 

);( &&
&

PSPS xx
PS Nx σμ≈         (6) 

 

with PSx &μ  and PSx &σ  estimated at 0.04% and 0.0155% respectively.  
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In a similar way the average default frequency of any rating source is normally 

distributed:  

 

);( rsrs xx
rs Nx σμ≈                 (7) 

 

The formulae (6) and (7) can be used to test whether the average default frequency 

of the rating source is at least as good as the average of the benchmark's by testing 

the statistical hypothesis 

 

SaPrs xx0 :H μμ <  against SaPrs xx0 :H μμ ≥              (8) 

 

Although seemingly simple, such a performance checking mechanism has several 

disadvantages. Firstly, assuming e.g. 24 years of data for the rating source, the null 

hypothesis can not be rejected if the annual default frequency is 23 times 0.00% and 

one time 0.96% ( %04.0
24

%96.01%00.023x rs =
×+×

= , p-value is 50%). In other words, 

extreme values for the observed default frequencies are allowed (0.96%). Secondly, 

the performance rule is independent from the static pool size. A default frequency of 

0.96% on a sample size of 10000 represents 96 defaults, while it is only 2 defaults for 

a sample of 200. Thirdly, a 24-year average seems not workable in practice. Other 

lengths could be used (e.g. a 10 year average), but even then it remains unworkable 

as 24 (or 10) years of data must be available before the rating source can be 

backtested. Taking into account these drawbacks, two alternative performance 

checking mechanisms will be presented in section VII.4. 

 

This rule can, however, very well be used to test whether the average default 

frequency of S&P and that of Moody's are significantly different. Under the null-

hypothesis that  

 

sMoodyPS xx
H '&:0 μμ =                  (9) 
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the difference of the observed averages is normally distributed, i.e. (assuming 

independence)  

 

);0( 22'&
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sMoodyPS Nxx σσ +≈−              (10) 

 

Using an estimate of the variance, the variable 
22

'&

'& sMoodyPS xx

sMoodyPS

ss

xx

+

−  has a t-distribution 

with 46 degrees of freedom and can be used to check the hypothesis (9) against the 

alternative hypothesis sMoodyPS xx
H '&:1 μμ ≠ . 

 

Using the figures from S&P and Moody's, a value of 0.81 is observed for this t-

variable. The value has a p-value (2-sided) of 42% so that the hypothesis of equal 

PD's for Moody's & S&P's “A” grade cannot be rejected. Hence, these findings 

support the Governing Council´s decision to fix the eligibility threshold at “A” as 

outlined in chapter 1.2 without further differentiating between Moody´s and 

Standard&Poor´s. 

In formulae (10) S&P and Moody's “A” class were considered independent. Positive 

correlation will imply a lower t-value.  

 

VII.3.3. The benchmark`s number of trials (NY) 
 

Using the Central Limit Theorem, it was found that the probability of default for A 

rated companies must be somewhere between 0.0% and 0.1%, with an average 

estimated at 0.04%.  

 

To allow a performance checking the assignment of PDs to rating grades alone is not 

enough. In fact, as can be seen from S&P data in table 1, the observed default 

frequencies often exceed 0.1%. This is because the PD and the (observed) default 

frequencies are different concepts. A performance checking mechanism should, 

however, be based on 'observable' quantities, i.e. on the observed default 

frequencies of the rating source.  
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In order to construct such a mechanism, it is assumed that the benchmark is a 

binomial distribution. The mean of this distribution is estimated at 0.04% (but it might 

be as high as 0.1%). The other binomial parameter is the number of trials N. For the 

benchmark, N is taken to be the average size of S&P's static pool or N = 792 (see 

table 1).  

 

This choice seems to be somewhat arbitrary because the average size over the 

period 2000-2004 is higher (i.e. 1166), but so is the average observed default 

frequency over that period (0.07%). Should the binomial parameters be based on this 

period, then the mean and the variance of this binomial benchmark would be higher, 

confidence limits would then also be higher.  

 

VII.3.3. The benchmark`s number of trials (NY) 
 

To summarise the two preceding sections we derived that:  

 

• The PD of the benchmark is at most 0.1%. 

• The benchmark can be modelled as a binomial random variable with 

parameters p = 0.04% and NY = 792 issuers.  

 

These findings can now be used to find limits for the observed default frequencies 

and thus to construct a performance checking mechanism.  
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VII.4. TWO POSSIBLE PERFORMANCE CHECKING MECHANISMS 
 

The previous section defined the benchmark of “A” in terms of a PD. The PD being 

unobservable, this section goes one step further and presents two alternative 

performance checking mechanisms based on the (observable) default frequency: 

• A performance checking mechanism that uses a fixed, absolute upper limit for 

the probability of default as a benchmark. 

• Taking the volatility of the “A”-grade into account (see table 1), one could 

measure its performance by a binomial distribution. The performance checking 

mechanism would then make use of a stochastic benchmark. 

 

VII.4.1. A performance checking mechanism relying on a fixed benchmark 
 

Using the Central Limit Theorem, we found that the probability of default of the 

benchmark (pbm) is at most 0.1%. A rating source is thus in line with the benchmark if 

its default probability is at most 0.1%.  Assuming that the rating source's default 

events are distributed binomial with parameters rsPD  and rs
YN , this means that a 

performance checking mechanism should check whether  

 

%1.0≤rsPD                  (11) 

 

Since rsPD  is an unobservable variable, (11) can not be used for validation 

purposes. A quantity that can be observed is the number of defaults in a rating 

source's static pool within one particular year i.e. rs
Y*df . (the ' indicates that it is the 

observed value).  
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The performance checking mechanism should thus check whether observing a value 
rs
Y*df  for a random variable that is (approximately) normally distributed 

⎟
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⎠

⎞
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⎜
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⎛ −
≈ rs

Y

rsrs
rsrs

Y N
PDPDPDNdf )1(;  is consistent with (11).  

This can be done using a statistical hypothesis test. One has to test the null 

hypothesis that  

 

%1.0p:H rs
0 ≤  

 

against the alternative hypothesis 

 

%1.0p:H rs
1 >  

 

Assuming that H0 is true, one can compute the probability of observing the value 
rs
Y*df . This is the so-called p-value of the hypothesis test. This p-value is given by 

 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−

rs
y

rs

N
%)1.01%(1.0
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where Φ  is the cumulative probability function for the standard normal distribution. 

Table 3 gives an example for an eligible set of 10000N rs
y =  companies. 
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n df'(rs) p-value probability

0 0.00%
1 0.01% 99.78% 0.35%
2 0.02% 99.43% 0.77%
3 0.03% 98.66% 1.54%
4 0.04% 97.12% 2.80%
5 0.05% 94.32% 4.60%
6 0.06% 89.72% 6.84%
7 0.07% 82.87% 9.22%
8 0.08% 73.66% 11.24%
9 0.09% 62.41% 12.41%

10 0.10% 50.00% 12.41%
11 0.11% 37.59% 11.24%
12 0.12% 26.34% 9.22%
13 0.13% 17.13% 6.84%
14 0.14% 10.28% 4.60%
15 0.15% 5.68% 2.80%
16 0.16% 2.88% 1.54%
17 0.17% 1.34% 0.77%
18 0.18% 0.57% 0.35%
19 0.19% 0.22% 0.14%
20 0.20% 0.08% 0.05%
21 0.21% 0.03% 0.02%
22 0.22% 0.01% 0.01%
23 0.23% 0.00% 0.00%
24 0.24% 0.00% 0.00%
25 0.25% 0.00% 0.00%  

Table 3: Test of credit quality assessment source against the limit of 0.1% for a sample 

size of 10000 
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The first column of the table 3 gives different possibilities for the number of defaults 

observed in year 'Y'. The observed default frequency is derived from it by dividing the 

number of defaults by the sample size. This is shown in the second column of the 

table. The third column shows the p-values computed using formulae (12). So the p-

value for observing at least 15 defaults out of 10000, assuming that H0 is true, equals 

5.68%. In the same way, it is derived from the table that if H0 is true, then the 

probability of observing at least 18 defaults on 10000 is 0.57%, or "almost 

impossible". This can be stated in another way: if we observe at least 18 defaults 

then H0 can almost impossibly be true. 

 

Fixing a confidence level (i.e. a minimum p-value, e.g. 1%), table 3 can be used as a 

performance checking mechanism:  

 

If the size of the static pool is 10000, then the rating source is in line with the 

benchmark only if at most 17 defaults are observed (confidence level of 1%), i.e. 

%17,0*df rs
Y ≤ . 

 

This technique has a disadvantage of first having to decide on a confidence level. 

Moreover, fixing only one limit (0.17% in the case above) does not guarantee a 

convergence to an average of 0.1% or below.  

 

A p-value being a probability, it can be interpreted in terms of 'number of 

occurrences'. From table 3 it can be seen that, if the null-hypothesis is true, the 

observed default frequency must be lower than 0.12% in 80% of the cases. In other 

words, only once every 5 year can a value above 0.12% be observed, else the rating 

source is not in line with the benchmark.  

 

Transformed into a simplified second performance checking rule, this could mean:   

 

A rating source, with a static pool of size 10000, is in line with the benchmark if at 

most once every five year a default frequency above 0.12% is observed. One should 

never accept a default frequency above 0.17%. 
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The intervals for other sizes of the static pool are shown in table 4.  

 
All time Once in 5y Never Average DF

500 0.00%-0.00% 0.20%-0.40% >0.40% 0.06%
1000 0.00%-0.10% 0.20%-0.40% >0.40% 0.10%
2000 0.00%-0.10% 0.15%-0.25% >0.25% 0.08%
3000 0.00%-0.10% 0.13%-0.23% >0.23% 0.08%
4000 0.00%-0.13% 0.15%-0.25% >0.25% 0.09%
5000 0.00%-0.12% 0.14%-0.20% >0.20% 0.08%
6000 0.00%-0.12% 0.13%-0.20% >0.20% 0.08%
7000 0.00%-0.11% 0.13%-0.19% >0.19% 0.08%
8000 0.00%-0.11% 0.13%-0.19% >0.19% 0.08%
9000 0.00%-0.11% 0.12%-0.18% >0.18% 0.07%
10000 0.00%-0.11% 0.12%-0.17% >0.17% 0.07%

50000 0.00%-0.112% 0.114%-0.134% >0.134% 0.07%  
Table 4: Performance checking rule based on a fixed benchmark for different static pool 

sizes 

 

The increase in values in the column 'once in five years' is due to the discrete nature 

of the variable; for a size of 500, for instance, the value above 0.0% is 0.2%.  

 

The column 'average DF' is an estimated average using 4 out of 5 occurrences at the 

midpoint of the first interval and 1 out of 5 occurrences at the midpoint of the second. 

These averages are clearly below the benchmark limit of 0.1%.  

 

VII.4.2. A performance checking mechanism based on a stochastic benchmark 
 

In the preceding section, a performance checking mechanism using a fixed upper 

limit for the benchmark was derived. That fixed upper limit followed from the Central 

Limit Theorem and was found to be 0.1%.  

 

Looking at table 1, it seems clear, however, that the benchmark is also stochastic. In 

this section we develop an alternative checking mechanism, based on a stochastic 

benchmark. In fact, it was derived in section VII.3 that the benchmark can be seen as 

an (approximately)  
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where PDbm was estimated at 0.04% and Nbm was estimated at 792.  

 

On the other hand, the rating source's default frequency is distributed as 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
≈ rs

Y

rsrs
rsrs

Y N
PDPDPDNdf )1(;               (14) 

 

Assuming a stochastic benchmark, there is no longer an upper limit for the PD of the 

rating source. The condition on which to base the performance checking mechanism 

should be 'the rating source should do at least as good as the benchmark' or, in 

terms of a PD, this means that the rating source's PD should be lower than or equal 

to the benchmark's. The hypothesis to be tested is thus:  

 
bmrs PDPDH ≤:0  against bmrs PDPDH >:1  

 

where PDbm was estimated at 0.04% and Nbm was estimated at 792.  

 

The test is completely different from the one in the preceding section. Indeed, we can 

not replace PDbm by 0.04% because this is only an estimate of the benchmark's PD. 

The true PD of the benchmark is unknown.  

 

The difference of two normal distributed variables also has a normal distribution, 

thus, assuming that both are independent50:  

 

⎟
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⎝

⎛ −
+

−
−≈− bm

bmbm

rs
Y

rsrs
bmrsbmrs

Y N
PDPD

N
PDPDPDPDNdfdf )1()1(;     (15) 

                                                 
50 If the rating source's eligible class and the benchmark are dependant then the variance of the combined normal distribution 

should include the covariance term.  
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PDrs and PDbm are unknown, but if the null hypothesis is true, then their difference 

should be 0≤− bmrs PDPD . An estimate for the combined variance  

 

bm

bmbm

rs
Y

rsrs

N
PDPD

N
PDPD )1()1( −

+
−   

 

is needed. A standard hypothesis test, testing the equality of two proportions, would 

use a 'pooled variance' as estimator. This pooled variance itself is derived from a 

'pooled proportion' estimator (see e.g. Moore and McCabe (1999), and Cantor and 

Falkenstein (2001)). The reasoning is that - as we test the hypothesis of equal 

proportions - all observations can be pooled so that there is a total of bmrs
Y NN +  

observations among which there are rs
Y

rs
Y

bmbm dfNdfN '.'. + . The pooled proportion is 

thus 

 

rs
Y

rs
Y

rs
Ypooled

N792
*df.N%04.0792'df

+
+×

=           (16) 

 

and the two variances are then 

 

rs
Y

pooledpooled
2
rs

pooledpooled
2
bm N

)*df1.(*df,
792

)*df1.(*df −
=

−
= σσ      (17) 

 

then (10) becomes 
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⎞
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⎝
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792
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N
1)*df1(*df;0Ndfdf rs
Y

pooledpooledbmrs
Y       (18) 

 

However, as we have an estimate of the benchmark that is based on 24 past 

observations, we decide not to touch the variance estimate of the benchmark. So, 

again taking a risk-averse position, we leave the variance of the benchmark 

untouched and the hypothesis test uses the distribution given in (19).  
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Using the observed default frequency ( rs'df ) as an estimate for the rating source and 

using the estimated benchmark values, the p-values of the test are given by: 
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The results for an estimated benchmark PD of 0.04% and a static pool of 10000 

companies are shown in table 5.  
mean stand dev df'(bm)

BM 0.0400% 0.0711% 0.0400%

Size 10000 mean

n df'(rs) p-value probability
0 0.0000% 71.27% 5.10%
1 0.0100% 66.17% 5.31%
2 0.0200% 60.86% 5.43%
3 0.0300% 55.43% 5.43%
4 0.0400% 50.00% 5.34%
5 0.0500% 44.66% 5.16%
6 0.0600% 39.49% 4.91%
7 0.0700% 34.59% 4.59%
8 0.0800% 30.00% 4.23%
9 0.0900% 25.77% 3.84%

10 0.1000% 21.94% 3.44%
11 0.1100% 18.50% 3.04%
12 0.1200% 15.46% 2.65%
13 0.1300% 12.81% 2.29%
14 0.1400% 10.52% 1.95%
15 0.1500% 8.57% 1.65%
16 0.1600% 6.92% 1.37%
17 0.1700% 5.55% 1.14%
18 0.1800% 4.41% 0.93%
19 0.1900% 3.48% 0.75%
20 0.2000% 2.73% 0.61%
21 0.2100% 2.12% 0.48%
22 0.2200% 1.64% 0.38%
23 0.2300% 1.26% 0.30%
24 0.2400% 0.96% 0.23%
25 0.2500% 0.73% 0.18%  

Table 5: Test of credit quality assessment source against the limit of stochastic benchmark 

for a sample size of 10000, using df*(bm) = 0.04% 

 



142 

Analogous to the reasoning in VII.4.1, this table can be used for a performance 

checking mechanism.  

 

A rating source, with a static pool of size 10000, is in line with the benchmark if at 

most  once every five year a default frequency above 0.1% is observed. One should 

never observe a default frequency above 0.23%.  

 

The intervals for other sizes of the static pool are shown in table 6. The average 

default frequency seems to be lower than 0.1% for all sizes. As argued in 0, a higher 

average than 0.04% could be justified. Table 6 shows the results when an estimate 

of 0.07% is used for the benchmarks PD.  

 

All time Once in 5y Average DF All time Once in 5y Average DF
500 0%-0% 0.2%-0.6% 0.08% 0%-0% 0.2%-0.8% 0.10%

1000 0%-0% 0.2%-0.5% 0.07% 0%-0.1% 0.2%-0.5% 0.11%
2000 0%-0.1% 0.15%-0.35% 0.09% 0%-0.1% 0.2%-0.45% 0.11%
3000 0%-0.1% 0.13%-0.3% 0.08% 0%-0.1% 0.13%-0.37% 0.09%
4000 0%-0.1% 0.125%-0.275% 0.08% 0%-0.125% 0.15%-0.37% 0.10%
5000 0%-0.1% 0.12%-0.28% 0.08% 0%-0.16% 0.18%-0.34% 0.12%
6000 0%-0.1% 0.12%-0.25% 0.08% 0%-0.15% 0.16%-0.35% 0.11%
7000 0%-0.1% 0.11%-0.24% 0.08% 0%-0.15% 0.17%-0.34% 0.11%
8000 0%-0.1% 0.11%-0.237% 0.07% 0%-0.15% 0.16%-0.32% 0.11%
9000 0%-0.1% 0.11%-0.23% 0.07% 0%-0.15% 0.16%-0.32% 0.11%

10000 0%-0.1% 0.11%-0.23% 0.07% 0%-0.15% 0.16%-0.32% 0.11%

50000 0%-0.1% 0.11%-0.21% 0.07% 0%-0.15% 0.152%-0.29% 0.10%

p(bm)=0.04% p(bm)=0.07%

 
Table 6: Performance checking rule based on a stochastic benchmark for different static pool 

sizes 
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VII.5. SUMMARY AND CONCLUSION 
 

Using the binomial distribution as a model for default events and arguing that a 

violation of its underlying assumptions implies a risk averse point of view, this paper 

has shown that the probability of default of an A rated issuers is at most 0.1%.  

 

The PD being an unobservable quantity, three alternative performance checking 

mechanisms based on the (observable) default frequency (i.e. the number of defaults 

in the pool divided by the size of the pool) were proposed. The first rule outlined in 

section 3.2 defines limits on the average default frequency over N years. From a risk 

management point of view, however, it might leave too much flexibility. Moreover, it is 

expected to be more difficult to implement in practice as long time series of historical 

default experiences are required. The next mechanism proposed defined a fixed 

upper limit on the PD. The limit was derived from the Central Limit Theorem. The 

resulting performance checking rule was given in table 4. It yields a long run average 

default frequency that seems below the fixed benchmark PD of 0.1%. The final and 

preferred option was based on a stochastic benchmark. The benchmark is again 

derived applying the Central Limit Theorem. The results are shown in table 6. These 

results yield a long run average default frequency that is close to the 0.1%.  

 



144 

REFERENCES 

A. AGRESTI/ B. COULL: Approximate is better than “exact” for interval estimation of 

binomial proportions: in The American Statistician. May 1998. 

A. AGRESTI/ B. CAFFO: Simple and effective confidence intervals for proportions 

and differences of proportions result from adding two successes and two failures: in 

The American Statistician. November 2000. 

Basel Committee on Banking Supervision: International Convergence of Capital 

Measurement and Capital Standards. A Revised Framework. 2005a. 

Basel Committee on Banking Supervision. Studies on the validation of internal rating 

systems (revised): A Working Paper. Bank for International Settlements. 2005b. 

P. BILLINGSLEY: Probability and Measure. No. 3. John Wiley & Sons. 1995. 

S. BLOCHWITZ/ S. HOHL: The worst case or what default rates do we have to 

expect from the rating agencies?: A Working Paper. Deutsche Bundesbank. 

Frankfurt. 2001. 

S. BLOCHWIZ/ C.S. WHEN/ S. HOHL: Reconsidering Ratings: A Working Paper. 

Deutsche Bundesbank. Frankfurt. 2003. 

L.D. BROWN/ T.T. CAI/ A. DASGUPTA: Interval Estimation for a Binomial 

Proportion: in Statistical Science, Vol. 16. No. 2. 2001. 

T. CAI: One-sided confidence intervals for discrete distributions: in J. Statistical 

Planning and Inference Vol. 131. 2005. 

R. CANTOR: Moody´s Investors Service´s response to the consultative paper issued 

by the Basel Committee on Bank Supervision “A new capital adequacy framework”: 

in Journal of Banking and Finance. Vol. 25. 2001. 

R. CANTOR/ E. FALKENSTEIN: Testing for Rating Consistency in Annual Default 

Rates: in Journal of fixed income. 2001. 

R. CANTOR/ C. MANN: Are corporate bond ratings procyclical: in Moody´s Special 

Comment (October). 2003. 



  145 

R. CANTOR/ F. PACKER/ K. COLE: Split ratings and the pricing of credit risk: in 

Journal of Fixed Income. December 1997. 

J. CHRISTENSEN/ E. HANSEN/ D. LANDO: Confidence Sets for Continuous-Time 

Rating Transition Probabilities: in Journal of Banking and Finance. Vol. 28. 2004. 

M. CROUHY/ D. GALAI/ R. MARK: Prototype risk rating system: in Journal of 

Banking and Finance. Vol. 25. 2001. 

M.H. DEGROOT: Probability and statistics. Second edition. Addison-Wesley 

Publishing Company. 1989. 

E. ELTON/ J. MARTIN/ J. GRUBER/ D. AGRAWAL/ C. MANN: C. Factors affecting 

the valuation of corporate bonds: in: Cantor, R. (Ed.), Recent Research on Credit 

Ratings (special issue): in Journal of Banking and Finance Vol. 28. 2004. 

European Central Bank: The implementation of monetary policy in the Euro area. 

General documentation on Eurosystem monetary policy instruments and procedures. 

2004. 

European Central Bank: Introductory statement to the press conference given by 

Jean-Claude Trichet, President of the ECB. Frankfurt. November 2004. 

J. FONS: Understanding Moody`s corporate bond ratings and rating process. 

Moody´s Special Comment. May 2002. 

Governing Council of the European Central Bank: Eurosystem collateral framework: 

Inclusion of nonmarketable assets in the single list. Press Release. July 22 2005. 

HEITFIELD: Studies on the Validation of Internal Rating Systems. Basel Committee 

on Banking Supervision: A Working Paper 14. 2005. 

C.-H. HUI/ T.-C. WONG/ C.-F. LO/ M.-X. HUANG: Benchmarking Model of Default 

Probabilities of Listed Companies: in Journal of Fixed Income. September 2005. 

J. HULL/ M. PREDESCU/ A. WHITE: A. The relationship between credit default swap 

spreads, bond yields, and credit rating announcements: in: Cantor, R. (Ed.), Recent 

Research on Credit Ratings (special issue): In Journal of Banking and Finance Vol 

28. 2004. 



146 

Y. JAFRY/ T. SCHUERMANN: Measurement, Estimation and Comparison of Credit 

Migration Matrices: in Journal of Banking & Finance Vol. 2004. 

N.L. JOHNSON. Discrete distributions. Houghton Mifflin Company. Boston. 1969. 

J.P. KRAHNEN/ M. Weber. Generally accepted rating principles: a primer: in Journal 

of Banking and Finance. Vol. 25. 2001. 

D. LANDO/ T.M. SKØDEBERG: Analyzing rating transitions and rating drift with 

continuous observations: in Journal of Banking and Finance. Vol. 26. 2002. 

Moody´s. Moody´s Default Report 2005: An Annual Default Study. 2005. 

D.S. MOORE/ G.P. MCCABE: Introduction to the practice of statistics. W.H. 

Freemand and Company. New York. 1999. 

R.G. NEWCOMBE: Two-sided confidence intervals for the single proportion: 

comparison of seven methods: Statistics in Medicine Vol. 17. 1998. 

P. NICKEL/ W. PERRAUDIN/ S. VAROTTO: Stability of Rating Transitions: in Journal 

of Banking and Finance. Vol. 24. 2000. 

J. REICZIGEL: Confidence intervals for the binomial parameter: some new 

considerations: A Working Paper. Szent István University. Budapest 2004. 

V.K. ROHATGI: Statistical Inference. Wiley Series in Probability and mathematical 

statistics. John Wiley & Sons. 1984. 

A. SPANOS: Statistical foundations of econometric modelling. Cambridge University  

Press. 1986. 

Standard&Poor´s. Annual global corporate default study: corporate defaults poised to 

rise in 2005. Global fixed income research. 2005. 

D. TASCHE. A traffic lights approach to PD validation. Working Paper. Deutsche 

Bundesbank. Frankfurt. 2003. 

A. TIOMO. Credit risk and variability of default rates: an empirical analysis using 

simulations. Working Paper. Banque de France. Paris. 2004. 



  147 

S.E. VOLLSET: Confidence intervals for a binomial proportion. Statistics in 

Medecine. Vol. 12. 1993. 

 

Annex 1: Historical data on Moody´s A-grade 

 

 


	II. Different Definitions of Default: Issues for Comparison and Disclosure of Rating Performance – an Overview with a Special Focus on Unpaid Trade Bills in France, by C. Traversaz (Banque de France) 11 
	I.   INTRODUCTION 
	II.  DIFFERENT DEFINITIONS OF DEFAULT: ISSUES FOR COMPARISON AND DISCLOSURE OF RATING PERFORMANCE – AN OVERVIEW WITH A SPECIAL FOCUS ON UNPAID TRADE BILLS IN FRANCE 
	III.  LOGIT MODELS TO ASSESS CREDIT RISK 
	L. Toledo Falcón / Banco De España  
	V.  PROJECT FINANCE – A MONTE CARLO APPROACH TO ESTIMATE PROBABILITY OF DEFAULT, LOSS GIVEN DEFAULT AND EXPECTED LOSS 
	 
	Annex 1: Historical data on Moody´s A-grade 

